Wide Field Integral Spectroscopy with Typhoon PrISM

Carnegie Institution for Science

Barry Madore, Jeff Rich, Mark Seibert

Spatially Resolved Galaxy IFS:

star formation star formation histories chemical evolution separated by morphological components Simple Execution: modern telescope control systems desktop computing power cheap disk storage ~ \$0

SLS/PrISM Concerns

INEFFICIENT

true for small objects true for faint objects use for large bright objects

SLS/PrISM Concerns

INEFFICIENT

true for small objects true for faint objects use for large bright objects

VARIABLE SKY

true always ultra-long slit allows for simultaneous sky for each exposure if diameter < slit.

PrISM Specifications @LCO du Pont

Table 1. PrISM Specifications

Field of view (slit)	$18' \times 1.65'' (0.5 \text{ arcminute}^2)$
Spectral resolution	R=800 (375 km s ^{-1} FWHM)
Spaxel size	$1.65'' \times 0.484''$ (native) / $1.65'' \times 1.65''$ (binned)
Spatial resolution	2 – 177 pc (48 pc median)
Spectral range	3650 – 9000 Å
Flux limit (5000Å) ^a	$4 \times 10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Å}^{-1}$ per resolution element
	33.4 μ Jy per resolution element
	$\mu = 21.1 \text{ AB mag} / \text{arcsec}^2$
	S/N=3, 600 sec., 1.65^2 arcsec spaxel
Telescope	2.5m f/7.5 du Pont telescope, Las Campanas, Chile
Camera/Detector	Wide Field reimaging CCD (WFCCD)
	25 arcminute diameter field
	WF4K 4064 $ imes$ 4064 CCD

Note. — (a) Spatial binning will provide high S/N measurements far below this limit.

PrISM 600sec

nucleus of UGC1382 distance=80 Mpc

> 22 steps 0.6' x 8.9'

I.65"x0.48" native pixel scale

PrISM 600sec SDSS 2700sec

nucleus of UGC1382 distance=80 Mpc

> 22 steps 0.6' x 8.9'

1.65"x1.65" binned pixel scale

M83 / NGC5236

5 Nights

179 Spectra

5' x 18'

Reduction is like long slit data but with 2D distortion corrections over entire FOV

M83 / NGC5236

5 Nights

179 Spectra

5' x 18'

Reduction is like long slit data but with 2D distortion corrections over entire FOV

~9x10⁸ voxels @native res. ~3x10⁸ voxels @binned res.

narrow-band line maps

white metaborption

M83 Current State

I-Ting Ho / LZIFU

61,000 spectra

41x41 pc resolution

I-Ting Ho / LZIFU

41x41 pc resolution

Science

just beginning

Kewley et al 2006

SDSS Sample:

- DR4
- S/N > 3 in H_beta, [OIII]5007, H_alpha, [NII]6584, [SII]6717
- Redshift between 0.04< z < 0.1
- --> 85,224 galaxies!

Figure 1. (a) The $[N \Pi]/H\alpha$ versus $[O \Pi]/H\beta$ diagnostic diagram for SDSS galaxies with S/N > 3. The Ke01 extreme starburst line and the Ka03 classification line are shown as the solid and dashed lines, respectively. (b) The $[S \Pi]/H\alpha$ versus $[O \Pi]/H\beta$ diagnostic diagram; (c) the $[O I]/H\alpha$ versus $[O \Pi]/H\beta$ diagnostic diagram.

Blanc et al. 2009

Figure 1. Left: *HST*+ACS V-band image of NGC5194 and its companion NGC 5195 (Mutchler et al. 2005). The central $4.1 \times 4.1 \text{ kpc}^2$ region sampled by the $1.7 \times 1.7 \text{ VRUS-P}$ field of view is marked in red. Right: map of the 738 regions sampled by VIRUS-P in the three dither positions. Each region has a diameter of 4".3 corresponding to ~170 pc at the distance of NGC5194. (A color version of this figure is available in the online journal.)

Figure 4. Nebular emission spectrum of the same regions shown in Figure 3, obtained by subtracting the best-fitted linear combination of stellar templates from the observed spectrum. Masked parts of the spectra correspond to the regions around strong night sky emission lines showing background subtraction residuals.

Figure 6. [N II] λ 6584/H α vs. [O III] λ 5007/H β line ratio for the 735 regions. The solid line marks the theoretical threshold of Kewley et al. (2001) separating AGNs from star-forming galaxies. Dotted lines mark the ±0.1 dex uncertainty in the threshold modeling. The 17 regions above the threshold and having angular distances to the galaxy nucleus of <15" are flagged as "AGN affected" and are shown as filled triangles. Open diamonds show the 718 regions unaffected by AGN commination used to construct the SFL.

PrISM M83 Resolved BPT

J. Rich (in progress)

Metallicity w/IZI

J. Rich (in progress)

LCO Typhoon/PrISM Survey Sample Definition

	PrISM	MaNGA	CALIFA	SAMI	ATLAS3D
Technique	LSS ^a	Fiber	Fiber	Fiber	Lenslets
Redshift range (z)	≤ 0.005	~ 0.03	0.005 - 0.03	≤ 0.05	≤ 0.01
Field of view	18' imes 1.65''	12" - 32"	74'' imes 64''	$14.9^{\prime\prime}\times14.9^{\prime\prime}$	$33'' \times 41''$
Spaxel size	1.65"	2″	2.7″	1.6″	0.94″
Filling factor (%)	100	54	60	75	100
Spectral range (Å)	3650-9000	3600-10000	$3700 - 5000^{ m b}$	$3700 - 5800^{ m b}$	4810 - 5350
			$4300 - 7000^{\circ}$	$6300 - 7400^{\circ}$	
Spectral res. (R)	800	2000	$1650^{\rm b}/850^{\rm c}$	$1750^{ m b}/4500^{ m c}$	1300
Physical res. (pc spaxel $^{-1}$)	~ 50	$\sim \! 1500$	${\sim}400$	$\sim \! 1000$	~ 300

Table 2.Comparison of current integral field spectroscopy surveys

Note. — (a) LSS — Long Slit Stepping, (b) blue side, (c) red side.

Survey Targets

Target	Туре	Major Axis arcmin	Minor Axis arcmin	B_{Total} mag	Distance Mpc	Resolution pc spaxel ⁻¹	No. Steps	Completed
WIM	IR	10.5	3.5	11.0	0.92	7/	129	preaet
NGC 24	Sc	62	2.4	12.1	813	64.9	87	
NGC 45	SABd	6.2	2. 1 4 5	11.1	7.07	56.5	162	
NGC 55	SBm	30.2	31	85	2.17	173	112	
NGC 59	E-SO	2.4	13	13.1	5 30	42.3	45	
IC 1574	IB	1.1	0.7	14.5	4 92	39.3	25	
NGC 247	SABC	19.5	5.5	97	3.65	29.2	100	
NGC 253	SABe	26.0	5.5	70	3.03	29.2	199	
NGC 200	Sed	10.5	12.0	2.5	2.00	16.0	168	10
IC 1613	JCU	12.0	12.9	10.1	0.65	5.2	400	10
NGC 625	SBm	66	2.0	11.6	4.07	32.5	75	r I
FSO 245 C005	IR	3.2	2.1	12.0	4.07	35.4	112	
L3O 245-G005 M77	Sh	5.2	5.1	12.0	12.45	100.9	204	
ESO154 C023	SBm	0.2	5.0	12.8	5.76	100.9	204	, I
NCC 1201	SD a	11.2	1.1	12.0	9.70	40.0	262	`
NGC 1291 NCC 1213	SBcd	11.2	10.0	9.4	9.37	74.0	303	
NGC 1313	SDCu	11.0	9.1	9.0 12.4	4.13	33.Z 42 E	22	
NGC 1311	SDIII	3.7 12 E	0.9	13.4	20.17	43.3 140 E	20	,
NGC 1316	50 Sh	13.5	7.8	9.4	20.17	160.5	282	;
NGC 1365	50	12.0	6.2	10.4	18.15	144.5	224	;
NGC 1399	E	8.5	7.8	10.4	18.28	145.6	282	1
NGC 1404	E C 1	5.0	4.4	10.9	19.09	152.0	158	•
NGC 1487	Sca	2.7	2.1	12.3	9.08	72.5	/3	
NGC 1512	Sa CD 1	8.5	4.1	11.1	9.64	76.9	148	1.
NGC 1744	SBCd	5.2	2.0	11.7	7.65	61.1	72	10
NGC 1800	Sa	1.6	1.1	13.1	8.24	65.8	41	10
UGCA 106	SABM	3.1	2.8	13.1	9.77	/8.0	102	
NGC 2835	SC AD	6.5	3.7	11.1	10.91	87.0	135	(
NGC 2997	SABC	10.2	6.2	10.0	11.23	89.6	224	10
Sextans B	IB	4.9	3.0	11.9	1.44	11.5	109	1
NGC 3109	SBm	15.8	2.7	10.4	1.34	10.7	97	10
Sextans A	IB	5.4	4.8	12.3	1.32	10.6	174	
NGC 3521	SABD	8.3	4.5	9.9	8.03	64.1	162	10
M104	Sa	8.5	5.0	9.1	9.33	74.5	182	
UGCA 320	IB	6.8	1.1	13.5	7.24	57.8	41	
NGC 5068	Sc	7.4	6.6	10.6	6.24	49.8	240	5
LEDA 166170	1	4.7	1.9	0.0	4.68	37.4	70	
M83	SC	13.5	13.2	7.8	4.47	35.7	479	
NGC 5247	SABb	5.4	4.3	10.8	22.20	176.6	155	
NGC 5253	Pec	5.0	2.1	10.8	3.15	25.2	77	5
NGC 5264	IB	3.0	2.2	12.6	4.53	36.2	79	
NGC 6300	SBb	5.4	3.4	11.0	14.40	114.8	123	2
NGC 6822	IB	11.8	11.8	9.4	0.56	4.5	427	10
IC 4951	SBd	3.1	0.7	14.0	9.35	74.6	25	
Aquarius dIrr	IB	2.1	1.1	14.0	0.94	7.5	38	
IC 5052	SBcd	7.1	1.3	11.7	5.87	46.9	47	
NGC 7064	SBc	3.7	0.7	12.7	9.87	78.8	25	
NGC 7090	Sc	8.1	1.6	11.3	10.40	83.0	58	
IC 5152	IAB	5.1	3.7	10.4	2.10	16.8	135	
IC 5332	SABc	6.0	5.8	11.3	9.53	76.1	209	
NGC 7713	Scd	4.9	2.1	11.5	9.28	74.1	77	
ESO 149-G003	IB	1.3	0.4	15.1	6.40	51.1	13	
NGC 7793	SAd	10.5	6.0	9.7	3.91	31.2	219	

Status as of Nov. 2015

In Processes Data Examples

Cartwheel

[SII] 6731Å

30

20

10

0

-10

-20

-30

-10 0 10 kpc

-2.0 -0.9 0.2 1.3 2.4

log erg/s/cm²/1e-17

NI316/17

5

.10

NI365

NI512

NI744

NGC300 Prelim

NGC300 Prelim

NGC300 prelim

NGC300 prelim

NGC6822 prelim

End