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ABSTRACT

Context. A stellar wind passing through the reverse shock is deflected into the astrospheric tail and leaves the stellar system either as
a sub-Alfvénic or as a super-Alfvénic tail flow. An example is our own heliosphere and its heliotail.
Aims. We present an analytical method of calculating stationary, incompressible, and field-aligned plasma flows in the astrotail of a
star. We present a recipe for constructing an astrosphere with the help of only a few governing parameters, like the inner Alfvén Mach
number and the outer Alfvén Mach number, the magnetic field strength within and outside the stellar wind cavity, and the distribution
of singular points (neutral points) of the magnetic field within these flows.
Methods. Within the framework of a one-fluid approximation, it is possible to obtain solutions of the governing MHD equations for
stationary flows from corresponding static MHD equilibria, by using noncanonical mappings of the canonical variables. The canon-
ical variables are the Euler potentials of the magnetic field of magnetohydrostatic equilibria. Thus we start from static equilibria
determined by the distribution of magnetic neutral points, and assume that the Alfvén Mach number for the corresponding stationary
equilibria is finite.
Results. The topological structure, i.e. the distribution of magnetic neutral points, determines the geometrical structure of the inter-
stellar gas – stellar wind interface. Additional boundary conditions like the outer magnetic field and the jump of the magnetic field
across the astropause allow determination of the noncanonical transformations. This delivers the strength of the magnetic field at
every point in the astrotail/astrosheath region beyond the reverse shock.
Conclusions. The mathematical technique for describing such a scenario is applied to astrospheres in general, but is also relevant
for the heliosphere. It shows the restrictions of the outer and the inner magnetic field strength in comparison with the corresponding
Alfvén Mach numbers in the case of subalfvénic flows.
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1. Introduction

1.1. The scenario

A wide range of literature is concerned with calculating sta-
tionary MHD flows for stellar magnetospheres, jets, stellar
winds, and laboratory or general plasma configurations, see e.g.
Chandrasekhar (1956), Tsinganos (1981), Lovelace et al. (1986),
and Goedbloed & Lifschitz (1997). These authors use one flux
function to represent two components of the magnetic field and
get a Grad-Shafranov type equation. This is a single nonlin-
ear, partial differential equation for this magnetic flux function,
and the method is restricted to 2D fields and flows. We apply a
method that is not restricted to one flux function, but works with
two flux functions of the magnetic fields.

Here we show that, under certain reasonable assumptions,
it is possible to use a powerful transformation method for

! Appendices are only available in electronic form at
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systematic modelling of the stellar wind region far away from
the star itself. We apply this method to the special scenario of
a stellar wind-interstellar medium (ISM) counterflow configura-
tion (see Fig. 1 for the special case of the heliosphere). From this
scenario, it is possible to estimate the pressure of the magnetic
field, plasma pressure, and ram pressure, which are dynamically
important for the ISM and therefore of high interest to astron-
omy (see e.g. Frisch 1993).

Beyond the region of the reverse shock (“Heliospheric
Shock” in Fig. 1), the plasma of the stellar wind is decelerated.
The magnetic field increases at the shock, so that a sub- or a
super-Alfvénic plasma flow exists in the downstream direction.
A contact surface forms between the two different flows. This
separatrix is called the astropause. Scherer et al. (1994) and Fahr
et al. (1993) showed that the bulk flow in the downwind direc-
tion can be assumed to be incompressible for small Mach num-
bers. This holds even more for field aligned flows, since the field
lines act as quasi-isothermals. As the decelerated stellar wind
has to adapt to the conditions of an outer magnetized Very Local
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Fig. 1. Sketch of the heliosphere shown as a special example of an
astrosphere.

InterStellar Medium (VLISM), a tangential discontinuity forms.
This is called the astropause (AP, indicated by “Heliopause” in
Fig. 1), which stretches out in the downwind direction, so that
the whole structure has a tail-like shape (see Fig. 1). Between the
termination shock (TS, the heliospheric shock in Fig. 1) and the
AP an inner astrosheath region extends into the astrotail, similar
to the Earth’s magnetotail. In the magnetotail, the MHD quanti-
ties depend mainly on the direction perpendicular to the tail axis
(e.g. Schindler 1972). In view of the evident similarities, we here
apply a similar description to astrotails. We show that there is a
strong correlation between the flow, especially its Alfvén Mach
number inside and outside the astropause region, and the current
density in the vicinity of the astropause. This correlation also
sets restrictions on the relation between outer and inner values
of the magnetic field and the Alfvén Mach numbers.

1.2. Model considerations and existing models

Astrospheric models can be divided into two kinds, analyti-
cal and numerical, but there is a gap between these two. In
most cases, the analytical models are only hydrodynamical or
purely magnetic models (e.g. Parker 1961). Parker’s article only
treats purely hydrodynamic models of the subsonic counter-
flow or of an unmagnetized stellar wind that blows into a
magnetohydrostatic interstellar environment (Parker 1961). His
models connect parameters, like the pressure of the magnetic
field and the thermal pressure, with the shape of the model-
astrospheres. Another analytical model was the first super-
Alfvénic MHD model suggested for the SW–ISM interaction,
which is based on the thin-layer (hypersonic) approximation
(Baranov & Krasnobaev 1971). In contrast to the model of
Parker or Baranov and Krasnobaev the geometry of our model,
presented here in this article, does not explicitly depend on the
Alfvén Mach number or the usual Mach number of the flow. We
propose a different point of view in this article by emphasizing
the connection between topological aspects of the magnetic field
structure and the geometrical shape of the astropause.

Other analytical models have been calculated for pressure
equilibrium (Newtonian approximation by Fahr et al. 1988)
or for those configurations where the plasma cavity is a fi-
nite ellipsoid, and the plasma has to leave the astrosphere by

diffusion (Neutsch & Fahr 1983). Other authors use the set of
MHD equations, but prefer solving the ideal Ohm’s law and ne-
glecting the Lorentz force in the Euler equation (see the kine-
matical approach by Suess & Nerney 1992, 1990; Nerney et al.
1991). Up to now no analytical and exact solutions of the MHD
equations exist for this scenario. This motivated us to consider
models that do not depend on mathematical approximations, but
where (additional) physical approximations are taken into ac-
count. For example, Imai (1960) analysed field-aligned flows
and calculated approximative solutions. However, we take into
account that a flow that has passed a shock is likely to develop
a sub-sonic/sub-Alfvénic flow with a negligible compressibil-
ity along the field- and streamlines. The argument in Scherer
et al. (1994) and Fahr et al. (1993) is that the low Mach num-
ber does not provide high compressibility rates. Another argu-
ment for “incompressibility” is that in a tail that is symmetric
with respect to the tail axis, the far-away field- and streamlines
are nearly one-dimensional. This implies a one-dimensional de-
pendence of the physical values perpendicular to this axis, see
Schindler (1972), so that the density is approximately constant
on field lines.

Webb et al. (1994) analysed two-dimensional MHD flows
and discussed the properties of transsonic flows. We focus on the
relation between the Alfvén Mach number MA and the electric
current density, which can be given by the jump of the two mag-
netic fields across the boundary of the astropause of, in principle,
3D configurations. We also focus on topological and geometrical
questions with respect to the boundary between two magnetized
flows.

Simulation results may also be reliable, although they can
deliver unphysical results, even when stable algorithms are used.
For example, Linde et al. (1998) discovered magnetic diffu-
sion in their simulation domain, although they used an ideal
MHD code. Evidently, numerical magnetic reconnection is tak-
ing place in some region of their domain of calculation.

Numerical reconnection cannot take place in our treatment
since we calculate exact and analytical solutions of the ideal
MHD equations with finite width of the astropause current sheet.
We describe smooth flows without shocks, i.e. without non-
tangential discontinuities, only. In our approach, we have re-
stricted the analysis to tangential discontinuities. The possibility
of Alfvénic discontinuities is discussed by Smith (2001) for the
heliospheric current sheet. Thus, we close the gap between the
older analytical, but simplified, treatments of the astrophysical
counterflow problem and the sophisticated numerical models.
We find principles for these counterflow scenarios that should
also hold for simulations having fewer physical simplifications.
Our aim is to calculate analytical and exact solutions of the sta-
tionary nonlinear MHD equations for stellar wind tails, extend-
ing the approximative analytical models discussed above.

The paper is structured as follows. In Sect. 2, we present the
equations to be solved for our scenario and the special method
used to solve them. In Sect. 3, we show how this method works
in the two-dimensional case, which is a simplification of our
model, focussing on the method and the basic principles of
MHD counterflows. In Sect. 4, we show how to construct the
flow and its stream lines, i.e. the magnetic field structure. This
gives us the pattern of such MHD flows. We use the simplest
magnetohydrostatic equilibria, viz. potential fields. The reason
for it will be given in Sect. 4. Section 5 discusses the depen-
dence on the symmetry and boundary conditions for the asymp-
totical one-dimensional case, which is interesting for tail-like
structures of the magnetic field. In addition, we present some
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two-dimensional tail models. Discussion and conclusions are
given in Sect. 6.

2. Stationary states in incompressible and ideal
MHD

The set of equations that must be solved to get incompressible
ideal MHD flows consists of the mass continuity Eq. (1), the
Euler or momentum equation with isotropic pressure P (2), the
induction equation including the ideal Ohm’s law (3), Ampère’s
law (4), the initial condition for the magnetic field (5), and the
condition for incompressibility (6):

∇ · (ρu) = 0, (1)
ρ (u · ∇) u = j × B − ∇P, (2)
∇ × (u × B) = 0, (3)

∇ × B = µ0 j, (4)
∇ · B = 0, (5)
∇ · u = 0. (6)

Due to the incompressibility, the mass continuity equation can be
written as u · ∇ρ = 0, so that the density is constant on stream-
lines. If we now introduce the auxilliary flow vector w :=

√
ρ u

and the Bernoulli pressureΠ := P+ 1
2w

2, we can write the above
equations as

∇ · w = 0, (7)

∇Π = 1
µ0

(∇ × B) × B − (∇ × w) × w, (8)

∇ ×
(

1√
ρ
w × B

)
= 0, (9)

∇ · B = 0. (10)

Hence, the momentum equation Eq. (8) is written such
that the analogy with magnetohydrostatic equilibria, ∇P =
µ−1

0 (∇ × B) × B, is evident.

2.1. Field-aligned flows

The stationary equilibria should be constructed such that they
tend to be stable in order to use them as stationary background
fields in very turbulent and time-dependent stellar winds. In ana-
lytical works (e.g. Suess & Nerney 1992, and references therein),
this problem is often treated kinematically, which means that the
Lorentz force is ignored. These authors find strong amplifica-
tion of convected magnetic fields in the so-called upwind direc-
tion, which is the direction from which the interstellar medium
is flowing towards the star. In this direction they identified a
cone of 30 degrees (where the star is sitting at the top of the
cone), in which their kinematical approach is invalid. Such ve-
locity fields with a strong perpendicular component to the mag-
netic field have a saddle-point structure in linear stability anal-
ysis (Hameiri 1998) and are, therefore, likely to develop ideal
MHD instabilities.

Hameiri found that a variational principle does not lead to a
stability criterion if velocity and magnetic field are not aligned,
because the used functional has only stationary points, but has no
minimum. Hameiri (1998) suggests that the lack of a minimum
is due to the presence of ballooning modes. In fact assuming the
incompressible limit, the equilibrium velocity field has to be sub-
Alfvénic to ensure the existence of a minimum. Thus, to calcu-
late magnetohydrodynamic configurations that should “survive”

long enough to represent a quasi-stationary state of the stellar
wind flow, it is necessary to assume field aligned flows. This en-
sures that these configurations can really exist in nature, i.e. that
they are sufficiently long-lived to be represented as stationary
MHD flows. This would not be the case with strong perpendic-
ular components of the flow with respect to the magnetic field,
since those would lead to quick ideal MHD instabilities. Thus,
models where magnetic and flow field are not (approximately)
aligned cannot exist in nature without showing strong time de-
pendency. Since strong time-dependent MHD flows, instabili-
ties, and shocks do occur in the corotating interaction regions of
the solar system, the validity of our models is restricted to those
regions far outside the termination shock. There, incompressible
and field-aligned flows are good approximations of the real out-
flows of stars, at least when they are sufficiently far away from
the stellar surface1.

From this point of view, to lower the risk of instability, it is
expedient to make the simplifying assumption of field aligned
flow, i.e.

w = ± MA√
µ0

B, (11)

where MA is the Alfvén Mach number. This equation fulfills the
induction Eq. (9) automatically. The sign on the righthand side
of Eq. (11) is to be understood in the framework of the transfor-
mation method introduced in the next subsection. With this as-
sumption, we can skip Eq. (9), and from Eqs. (11), (7), and (10)
it follows directly that

w · ∇MA = 0, and B · ∇MA = 0. (12)

Therefore, the mass density ρ and the Alfvén Mach number
are constant on field lines, but they can vary perpendicular to
them. In conclusion, we have to solve the following system of
equations:

B · ∇MA = 0, (13)

∇Π = 1
µ0

(
1 − M2

A

)
(∇ × B) × B − |B|

2

2µ0
∇
(
1 − M2

A

)
, (14)

∇ · B = 0. (15)

This system determines the unknowns B, MA and Π. In the next
subsection we present a method of solving the general three-
dimensional problem given by the system of Eqs. (13)–(15) by
means of a noncanonical transformation. Later on, we explic-
itly calculate two-dimensional equilibria in order to highlight
the main properties that are important for understanding relaxed,
magnetized, stellar tail flows. The reduction of this system to
one magnetic flux function (e.g. Tsinganos 1981; Goedbloed &
Lifschitz 1997) will be done in Sect. 3.

2.2. Euler potential representation and noncanonical
transformations

In most cases in the literature (e.g. Chandrasekhar 1956;
Tsinganos 1981; Lovelace et al. 1986; Goedbloed & Lifshitz
1997), the problem of solving the stationary MHD equations
is reduced to equations similar to the Grad-Shafranov equa-
tion (GSE, see e.g. Grad & Rubin 1958) by introducing two-
dimensional flux functions for the magnetic field. Here, we give

1 This is also valid, if we focus our view either on the classical (sub-
sonic unmagnetized flow, radially extrapolated to the origin) Parker flow
or on the Parker spiral magnetic field, which we use as a geometrical
pattern for calculating flows and magnetic fields in the next sections.



800 D. H. Nickeler et al.: MHD flows in astrotails

a short introduction to a different method that allows us to cal-
culate also fields that could be three dimensional.

In 1984, Zwingmann showed the similarity between magne-
tohydrostatic (MHS) equilibria and stationary MHD equilibria
with incompressible, field-aligned flows. Later, this theory was
improved by Gebhardt & Kiessling (1992), and subsequently
used by Petrie & Neukirch (1999) for modelling sunspot mag-
netic fields with plasma flow. We briefly recapitulate the trans-
formation method used in the cited papers in order to facilitate
the analysis of our astrospheric model.

In general, non-ergodic magnetic fields can be represented
by using Euler potentials (see e.g. Kruskal & Kulsrud 1958 or
D’haeseleer 1990, and references therein). The magnetic fields
of MHS equilibria can also be represented by using Euler poten-
tials, writing

BS = ∇ f × ∇g, (16)

where the Euler or Clebsch potentials f and g are scalar func-
tions of x, y, z in general. Here, and in the following, the sub-
script S will be used to indicate magnetohydrostatic equilibrium
quantities. The MHS equations can now be written as canonical
Hamiltonian equations:

∂PS

∂ f
= jS · ∇g, (17)

−∂PS

∂g
= jS · ∇ f , (18)

with the canonical variables f and g and the arc length s along
the current jS (see Schindler 1979). The MHS field BS can now
be mapped to a new field B by performing the transformation,

f = f (α, β) α = α( f , g)
⇐⇒

g = g(α, β) β = β( f , g) (19)

where the derivatives as well as the inverse mappings and its
derivatives, are assumed to exist. Then, there is a relationship
between the old (static) field BS and the new field B, which can
be interpreted as a stationary field:

BS = ∇ f × ∇g = [ f , g]α,β∇α × ∇β ≡ [ f , g]α,β B, (20)

where the Poisson bracket [ f , g]α,β is the Jacobian of the trans-
formation Eq. (19). If the Poisson bracket [ f , g]α,β = 1, it can be
seen from Eq. (20) that only a change of the potentials but no
real active transformation has taken place, so that the magnetic
field has not been changed. Therefore, α and β would also be
canonical variables for the field BS , and the mapping from BS
to B would be a canonical transformation, which does not pro-
duce new physics. However, if the Poisson bracket [ f , g]α,β ! 1,
then the magnetic field B has to be interpreted in a different way,
as it is not possible to identify it as a magnetic field of a static
equilibrium.

The similarity between MHS, Eq. (21) below, and MHD,
Eq. (14), can be seen by inspecting the original momentum bal-
ance equation of the MHS field, when we insert Eq. (19) into
∇PS = jS × BS , which leads to

∇PS =
1
µ0

(∇ × (∇ f × ∇g)) × (∇ f × ∇g)

=
[ f , g]2

α,β

µ0
∇ × (∇α × ∇β) × (∇α × ∇β)

−|∇α × ∇β|
2

2µ0
∇[ f , g]2

α,β. (21)

Consequently, the relation between the Poisson bracket and the
Alfvén Mach number is given by

0 <
([

f , g
]
α,β

)2
:= 1 − M2

A (22)

for purely sub-Alfvénic flows, and by

0 <
([

f , g
]
α,β

)2
:= M2

A − 1 (23)

for purely super-Alfvénic flows.
Setting B = 0 in Eq. (8), which describes a purely incom-

pressible stationary hydrodynamical flow, Gebhardt & Kiessling
(1992) noted the similarity between Eqs. (8) and (21). This can
be seen if the auxiliary flow field w is also represented by Euler
potentials. Then a mapping from a known solution of stationary
incompressible hydrodynamics to a stationary incompressible,
super-Alfvénic field-aligned flow is possible, if ([ f , g]α,β)2 > 1.
It is possible to map a known solution of the MHS equations by
means of a transformation with ([ f , g]α,β)2 < 1 to an incom-
pressible MHD equilibrium with a field-aligned sub-Alfvénic
flow. Thus for every incompressible field-aligned sub-Alfvénic
flow, it is possible to find a mapping onto a MHS equilib-
rium. Alternatively, it is also possible to take a different look
at the problem by focussing on the “current-generating” trans-
formation of a given MHS equilibrium, as we are interested
in the astropause current sheet. This works as follows: from
Eqs. (21) and (23) it is obvious that for a certain transforma-
tion, e.g. given by a sub-Alfvénic flow with the Jacobian squared
([ f , g]α,β)2 < 1,

wsub = sign
[[

f , g
]
α,β

]
√

1 −
([

f , g
]
α,β

)2

√
µ0

B, (24)

there exists a corresponding super-Alfvénic solution for the flow
fields:

wsuper = sign
[[

f , g
]
α,β

]
√([

f , g
]
α,β

)2
+ 1

√
µ0

B. (25)

This has to obey the following restriction

0 < [ f , g]2
α,β = M2

A,super − 1 ≡ 1 − M2
A,sub < 1 (26)

⇒ M2
A,super ≡ 2 − M2

A,sub, (27)

to be satisfied at every point in space, while the magnetic field is
the same as in the sub-Alfvénic case: Bsuper ≡ Bsub ≡ B.

Therefore, it is not guaranteed for all Poisson brackets, i.e.
transformations, that sub-Alfvénic solutions exist, but for a given
sub-Alfvénic solution ([ f , g]α,β)2 < 1 a corresponding super-
Alfvénic MHD flow exists with 1 < M2

A,super < 2. For these
flows, the magnetic field of the underlying MHS equilibrium
magnetic field will be amplified:

|B| ≡
∣∣∣Bsuper

∣∣∣ =

∣∣∣∣∣∣∣∣∣

BS√
M2

A,super − 1

∣∣∣∣∣∣∣∣∣
> |BS | . (28)

It is also necessary for the super-Alfvénic case that the thermal
or plasma pressure Πsuper is “inverted” to regain the similarity
between Eqs. (14) and (21),

∇PS ≡ ∇Πsub, (29)
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changed to

∇PS ≡ ∇
(
−Πsuper

)
, (30)

where Πsub is the sub- and Πsuper is the corresponding super-
Alfvénic Bernoulli pressure. Integration of these equations
leads to

PS = Πsub + Π0, (31)
PS = −Πsuper + Π1, (32)

where Π0 and Π1 are integration constants. It follows from
Eqs. (31) and (32) that

Psuper = Π1 − Π0 −
( |B|2

2µ0
+ Psub

)
· (33)

All the above-mentioned relations and considerations are also
valid for the case M2

A,super − 1 = ([ f , g]α,β)2 > 1. Only
Eqs. (26), (27), (31), and (33) are not valid then, along with the
inequality Eq. (28). However, what does remain valid is that the
magnetic field of the underlying MHS equilibrium can be ampli-
fied or weakened:

B ≡ Bsuper =
BS√

M2
A,super − 1

, (34)

with domains where |B| can be larger, and domains where |B|
can be smaller than BS .

We want to focus on purely sub-Alfvénic flows. In this case
the transformation equations from the static to the stationary
fields can be written as

BS = ∇ f × ∇g (−→ B = ∇α × ∇β = BS√
1 − M2

A

, (35)

PS = PS ( f , g) (−→ P = PS −
1
2
ρ|u|2, (36)

u = 0 (−→ u =
MA BS√
µ0ρ

(
1 − M2

A

) · (37)

We are interested in the fact that an astrosphere is terminated
by a boundary between two different magnetic fields. For the
magnetic field, this boundary is a tangential discontinuity or an
encounter of two magnetic fields with a large gradient across
that boundary. This boundary, the astropause, can therefore be
regarded as a current layer, so we need additional informa-
tion. We can deduce that the electric current density is also
transformed by

µ0 j = ∇ × (∇α × ∇β)
= ∇[α, β] f ,g × (∇ f × ∇g) + [α, β] f ,g∇ × (∇ f × ∇g)
= ∇[α, β] f ,g × BS + µ0 [α, β] f ,g jS

MA<1
=

sign
[[
α, β

]
f,g

]
MA

√(
1 − M2

A

)3
[∇ f (∇MA · ∇g) − ∇g (∇MA · ∇ f )

]

+
sign

[[
α, β

]
f,g

]

√
1 − M2

A

∇ × (∇ f × ∇g) , (38)

which implies that even in the case of a static equilibrium with
vanishing current density, i.e. a potential field, one gets a station-
ary equilibrium with a non-vanishing current,

j =
sign

[[
α, β

]
f,g

]
MA

µ0

√(
1 − M2

A

)3
[∇ f (∇MA · ∇g) −∇g (∇MA · ∇ f )

]
. (39)

In addition to the previous works by the mentioned authors
(Gebhardt & Kiessling 1992; Petrie & Neukirch 1999), we have
found that the flow and the current are strongly correlated by
means of the Alfvén Mach number.

3. Two-dimensional equilibria

To get exact and analytical equilibria, we restrict our view to
two-dimensional equilibria since only symmetric equilibria are
known in infinite domains, see e.g. Tsinganos (1982). There
are no analytical and exact 3D MHD equilibria known that
are bounded and that extend throughout the whole 3D space.
Therefore, we assume from now on that f = A, where A is a
function of x and y, and that g = z, so that we get the GSE (see
e.g. Grad & Rubin 1958):

∆A = −µ0
dPS

dA
= −µ0 jzS , (40)

and a relation between the Alfvén Mach number and the
derivative of α:

M2
A = 1 − 1

α′(A)2 ⇔ (
α′(A)

)2
=

(
dα
dA

)2
=

1
1 − M2

A

· (41)

The current density for the stationary equilibrium can then be
expressed by

∆α = −µ0 jz = ∇ · (∇α) = α′′(A) |∇A|2 + α′(A)∆A. (42)

The calculation of the current can also be derived from Eqs. (38)
and (39) where we have transformed the current density for gen-
eral 3D equilibria following Ampère’s law, setting f = A and
g = z. This is reasonable, if a domain in the vicinity of the
equatorial plane of the star is to be represented by the calculated
equilibria.

4. The pattern of the flow field and the magnetic
field: potential fields as magnetohydrostatic
equilibra

We show in this section that the distribution of (virtual or real)
magnetic neutral points, which are also stagnation points if we
assume a finite Alfvén Mach number, determines the global
topological and geometrical structure of the astrosphere. In the
linear case, there is a relation between the magnetic multipole
moments and the neutral points that will be given later on. But
also for a more complicated class of nonlinear solutions of the
MHS equations, it is possible to find similar relations. Those will
be discussed in a future paper.

There are several reasons for using potential fields as origins
for our mappings. They are much simpler to handle than non-
linear MHS fields in the framework of our solution technique,
where the nonlinearity of the MHD equations is handled by a
nonlinear mapping technique. Hence, one only has to solve a
linear partial differential equation, whereas the nonlinearity is
hidden in a nonlinear algebraic equation. In addition, potential
fields have a highly stable character as they have no free mag-
netic energy, although it is not known if stability is conserved
after the mapping onto a stationary equilibrium (see Petrie &
Neukirch 1999). Also, the connection between the neutral point
distribution of the magnetic field and the global structure of the
magnetic and the velocity fields can clearly be seen.

Another reason is that there should be at least one saddle
point (the so-called X-point) in this counterflow configuration.
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Amongst (N + 1) null points, at least one point must exist in the
vicinity of the nose of the astropause (at the stagnation point) for
which the eigenvalues of the Jacobian of the linearized magnetic
field2,



∂Bx

∂x
∂Bx

∂y

∂By
∂x
∂By
∂y




(
x
y

)
=

(
B1x
B1y

)
, (43)

take the form

λ = ± λ1, λ1 ∈ IR. (44)

With the Grad Shafranov equation

∆A = −µ0
dP
dA
= J(A) ⇒ ∂2A

∂y2 = J(A) − ∂
2A
∂x2 , (45)

where J(A) is the current function, we can write the linearized
magnetic field as




∂ 2A
∂x ∂y

J(A) − ∂
2A
∂x2

−∂
2A
∂x2 − ∂

2A
∂x ∂y




(
x
y

)
=

(
B1x
B1y

)
. (46)

The properties of the eigenvalues of the Jacobian of the mag-
netic field determine whether the neutral (or stagnation) point is
a point with which one can define a separatrix curve (or surface,
see Arnold 1992; Reitmann 1996). The separatrix is a border
surface between two different regions of a flow, or of a magnetic
field that separates a vector field in areas of different topological
connections. To get information about the topological structure
of the magnetic field, we calculate

Det




∂ 2A
∂x ∂y

− λ J(A) − ∂
2A
∂x2

−∂
2A
∂x2 − ∂

2A
∂x ∂y

− λ



= 0 (47)

⇒ λ2 −
(
∂ 2A
∂x ∂y

)2

−
(
∂ 2A
∂x2

)2
+ J(A)

∂ 2A
∂x2 = 0. (48)

Therefore, we obtain the following eigenvalues:

λ = ±



(
∂ 2A
∂x ∂y

)2
+

(
∂ 2A
∂x2

)2

− J(A)
∂ 2A
∂x2




1
2

(49)

= ±



(
∂ 2A
∂x ∂y

)2
+ 2

(
∂ 2A
∂x2

)2

+
∂ 2A
∂y2

∂ 2A
∂x2




1
2

· (50)

For two conjugate complex solutions in 2D, we obtain λ =
±λ1 ∈ lC, i.e. only two purely imaginary values exist. If only
two real eigenvalues exist, there is a saddle point (also called
X-point), which is necessary for the existence of a separatrix
and which guarantees that there is a boundary surface between
two distinct areas of the flow; i.e. an astropause exists. If A is a

2 The global coordinates (X,Y) are replaced here by (x, y) = (X −
XS ,Y − YS ), with (XS ,YS ) being the coordinates of the null point.

potential field, i.e. ∆A = J(A) = 0, then the null point is a sad-
dle point, as can be seen from Eq. (49). If the eigenvalues at the
null point are purely imaginary, then, depending on the absolute
value, a centre (a so-called O-point) exists with topological cir-
cles as fieldlines, or a so-called focus with spiral fieldlines. The
last case is not found for solenoidal vector fields, since the trace
of the Jacobian matrix vanishes for them.

4.1. Potential fields

We now have to calculate the flow pattern, i.e. the magnetic field
pattern. This can be done by calculating the most simple and
stable magnetic fields, namely potential fields. We construct so-
lutions by using a 2D multipole representation in the form of
a Laurent series, which enables us to find static equilibria. For
this general kind of a conformal mapping, we exclude the region
around the singularity (x, y) = (0, 0) with ' =

√
x2 + y2 < Rts

within the termination shock, representing the inner part of the
astrosphere. We define u := x + iy. A and B are the complex
magnetic flux function and the complex magnetic field. A(u)
andB(u) are holomorphic functions (at least nearly everywhere),
with a real part -(A) = φm and imaginary part .(A) = A, and
-(B) = Bx and .(B) = −By accordingly. A is the magnetic flux
function and φm is the scalar magnetic potential. Therefore, we
can write

B = dA
du
=
∂φm

∂x
+ i
∂A
∂x
= Bx − iBy. (51)

We use the following Ansatz for the magnetic field

B = BS∞ +
∞∑

µ=1

cµu−µ, (52)

to satisfy the asymptotical boundary conditions

lim
|u|→∞

B = BS∞, (53)

so

A = BS∞u + C0 ln u +
∞∑

ν=1

Cνu−ν (54)

is valid.
There is a similarity between the logarithmic term of the hy-

drodynamical problem of a circular flow and the radial or az-
imuthal part of a magnetic potential field, so that we can write

A = BS∞u +
Γ

2πi
ln u +

∞∑

ν=1

Cν u−ν, (55)

or especially

A = BS∞u +
Γ0 (cos β0 + i sin β0)

2πi
ln u − |C1|

(cos β1 + i sin β1)
u

−|C2|
(cos β2 + i sin β2)

u2 + terms of higher order. (56)

The first term in the expansion is the homogenous part due to
the asymptotical boundary condition, which survives the non-
canonical transformation. The second term is the circulation or
monopole part due to a line current. If Γ = Γ0 (cos β0 + i sin β0)
is real, then one has a typical counterflow configuration for the
hydrodynamcal circulation of a flow around a circular cylinder.
Here Γ0 = µ0I0, where I0 is the line current. The third term
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is a line-dipole part. In the case of pure hydrodynamics, this
part represents the radius R2 ≡ |C1| of a flow around a circu-
lar cylinder, if sin β1 = 0. The fourth term is the quadrupole part.
Furthermore, |C1| = 2I2a is the dipole moment, I2 the current, a
the half distance of the antiparallel line currents, and the product
I2a = const, while I2 → ∞ and a→ 0.

Moving stars, together with their winds, can be regarded as
obstacles in the stream of the ISM. Such counterflow configura-
tions lead to the formation of separating surfaces. On these sur-
faces, stagnation points must exist where the flow velocity van-
ishes. Stream lines passing through these stagnation points are
called separatrices because they separate stream lines of differ-
ent topological connection. They represent the borderlines be-
tween two different flows. To calculate the stagnation points3,
one has to solve the equation B = 0. In the topological the-
ory of fluids, this field structure is called an X-point structure4.
However, application to the Parker field would imply the exis-
tence of an additional singularity beyond the X-point, located at
the origin of the magnetized wind plasma, i.e. at the location of
the central star itself. To generate a field similar to the hydrody-
namic Parker flow of the heliospheric flow field (Parker 1961), it
is necessary (i) that xS P ≡ xN(< 0) is the magnetic neutral point
(where the magnetic field vanishes and in our treatment also the
velocity field), (ii) that for ' ≡

√
(x2 + y2) → 0 a radial field

structure exists, and (iii) that the flow field converges asymptot-
ically to a homogenous field for '→ ∞. The Parker flow field is
only useful and valid far away from the origin of the magnetized
wind plasma of the central star. One reason is, of course, that
the field strength towards the origin is diverging. It turns out that
selection of a circulation with a nonvanishing imaginary part is
necessary. This enables the stellar wind to escape from the re-
gion of the reverse shock, and it creates a radial field structure
towards the origin.

Note: in our case, the Alfvén or the usual Mach number does
not determine the geometrical shape of the astropause, in con-
trast to the discussion in Parker (1961). Hence, our method can-
not be compared directly with Parker’s calculations. The map-
ping technique will allow sub- and super-Alfvenic flows to exist,
although the streamline geometry does not change. Thus, it is
also possible to have open field lines on both sides (upwind and
downwind), like in the purely magnetic model of Parker.

4.2. Neutral points and multipole moments

The complex magnetic field B can be calculated fromA = φm +
iA, with φm as the magnetic potential

B = dA
du
, (57)

where the Ansatz of the series (56) yields

B = BS∞ +
Γ

2πi
1
u
− C1

u2 −
2C2

u3 · (58)

A direct analytical method of calculating the null points should
be applied here in the case of a multipole representation with two
non vanishing multipoles. We restrict our analysis to the first two
multipoles to get the magnetic null:

B = BS∞ +
Γ

2πi
1
u
− C1

u2 = 0. (59)

3 For a regular configuration, in the sense of finite Mach number and
density distribution, these nulls or magnetic neutral points are also stag-
nation points.

4 Such points are saddle points of the magnetic flux function.

This gives a quadratic equation,

u2 − i Γ
2π BS∞

u − C1

BS∞
= 0, (60)

having the solutions

u =
iΓ

4π BS∞
±
√(

iΓ
4π BS∞

)2

+
C1

BS∞

=
i (Γr + iΓi)

4π BS∞
±
√


C1r

BS∞
+
Γ2

i − Γ2
r

16π2 B2
S∞


 + i




C1i

BS∞
− ΓrΓi

8π2 B2
S∞




=
−Γi + iΓr

4π BS∞
±

√ √
R2 + I2 + R

2
± iI
√

2
√
R2 + I2 + 2R

, (61)

with

R = C1r

BS∞
+
Γ2

i − Γ2
r

16π2 B2
S∞
, I = C1i

BS∞
− ΓrΓi

8π2 B2
S∞
, (62)

where the indices r and i indicate the real and imaginary parts of
the coefficients. Therefore,

xS 1 = −
Γi

4π BS∞
± 1√

2

(√√
R2 + I2 + R

)
,

yS 1 =
Γr

4π BS∞
± I
√

2
√
R2 + I2 + 2R

· (63)

The singular point is situated where field lines meet; here is the
beginning, i.e. the ending of several field lines. The stagnation
point also marks one contour, e.g. a certain value of A. From that,
we can calculate the equation of the astropause and the asymp-
totical equation of the astropause, which delivers the diameter
of the astrotail at infinity. The second stagnation point, which is
calculated for the case of the symmetric linedipole with yS 2 = 0,
xS 2 > 0 > xS 1, and xS 2 > |xS 1|, can be considered as the radius of
the inner astrosphere, i.e. as the position of the termination shock
in the direction of the astrotail. We perform a systematic calcula-
tion of the magnetic neutral points, making the general Ansatz of
a Laurent series. If the Alfvén Mach number is finite, the mag-
netic neutral points are identical with the stagnation points. We
analyse how the position of the stagnation points of the inter-
stellar counterflow influences the field structure, especially the
geometry of the astropause. We use the logarithmic part and
the homogeneous asymptotic boundary condition, together with
the assumption of a finite number of neutral points:

A = BS∞u + C0 ln u +
N∑

ν=1

Cνu−ν . (64)

Here ν = 1 is the dipole, ν = 2 the quadrupole, ν = 3 the oc-
topole, etc. The magnetic null or neutral points uk are given by

B(uk) =
dA
du

∣∣∣∣∣∣
u=uk

= 0. (65)

Thus, we have to find the null points of the polynomial

uN+1 +
C0

BS∞
uN −

N∑

ν=1

νCν
BS∞

uN−ν =
N+1∏

k=1

(u − uk) = 0. (66)
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With the help of Vieta’s theorem of roots, we get

C0 = −BS∞

N+1∑

k=1

uk, (67)

Cν = (−1)ν
BS∞
ν

∑

⋃CN+1
ν+1



∏

uk∈CN+1
ν+1

uk


 , 1 ≤ ν ≤ N. (68)

The symbol CN+1
ν+1 denotes combinations of the uk. These are the

subset ν + 1 elements of the N + 1 elements (of the magnetic
nulls). The distribution of the magnetic neutral points determines
the global geometry and the topology of an astrosphere.

4.3. The equation of the astropause

Regarding a symmetric and, with respect to the direction of inter-
stellar medium, closed astrosphere, we only take neutral points
on the x axis into account. The smallest, negative, x value gives

A(u1) = Asep1 = A(x1, 0) ⇒ Asep1 = 0, (69)

and, therefore,

A(x, y) = Asep1u = 0 (70)

for the separatrix with x < 0. However, including the monopole
term, we obtain for the point where the separatrix (astropause)
passes through the y axis:

lim
x→−0

A(x, y) = A(x = −0, y = yD) = Asep1. (71)

where yD is the location of the astropause, which is lying on
the y axis and, therefore, is elongated parallel to the inner astro-
sphere; i.e. it is positioned at the same x coordinate of the star
(xstar, ystar) = (0, 0). Now, yD can be determined from Eq. (71).
For x > 0, we may calculate the curve of the astropause in the
x−y plane as an implicit function of

AH(x, y) = A(x = −0, y = yD) + πC0

= Asep1 + πC0 = Asep2 = πC0, (72)

taking the jump of the arcus tangens function into considera-
tion. With three neutral points, the magnetic flux function can be
written as

.(A) = A = BS∞y +C0 arctan
(y

x

)

−C1
y

x2 + y2 −C2
2xy

(
x2 + y2)2 · (73)

For x < 0 and y > 0 (with opposite sign for the limit of the
arctan for y < 0, i.e. for the down part of the astropause),

lim
x→−0

A(x, y) = A(0, yD) = BS∞yD −
π

2
C0 −

C1

yD
= 0 = Asep1, (74)

we get for the point where the separatrix intersects the y axis

yD = ±


πC0

4BS∞
+

√(
πC0

4BS∞

)2

+
C1

BS∞


 · (75)

In the case of general asymmetric configurations, it is possible
to calculate the intersection point with the y axis from

lim
x→−0

A(x, yD) = A(x1, y1) = Asep1

= BS∞yD −
π

2
C0r +C0i ln |yD| +

N∑

ν=1

Cν y−νD . (76)
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Fig. 2. Field lines of the tail model as contour lines of the magnetic flux
function and branches of the separatrix. u1 is fixed at −1.5, where the
scale is in units of 100 AU. For u2 = 1.5 one can clearly see the simi-
larity of this magnetic field lines with that of a flow around a cylinder.
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Fig. 3. As in Fig. 2, but for u2 = 0.95 × 1.5 = 1.425.

With

lim
x→+0

A(x, yD) = BS∞yD +C0
π

2
− C1

yD
= Asep1 + πC0 = πC0, (77)

we can calculate the other branch of the separatrix:

AH(x, y) = BS∞yD +
π

2
C0r +C0i ln |yD| +

N∑

ν=1

Cν y−νD (78)

here
= BS∞y + C0 arctan

(y
x

)
−C1

y

x2 + y2 −C2
2xy

(
x2 + y2)2

= πC0, (79)

which is the part of the astropause that is opened in the tail di-
rection. The outer separatrix is nothing else than the astropause.
The asymptotical equation of the astropause is given by

AH∞(x, y) := lim
x→∞

A(x, yH) = BS∞ yH

= πC0 ⇒ yH =
πC0

BS∞
· (80)

In the series of Figs. 2 to 9 we show how the existence of two null
points influences the shape of the astropause as an astrospheric
interface. The scale is in units of 100 AU. The first neutral point
is chosen at a location that results in an astropause configuration
applicable to the heliosphere.
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Fig. 4. As in Fig. 2, but for u2 = 0.85 × 1.5 = 1.275. That some field
lines do not appear closed is only a plotting artifact.
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Fig. 5. As in Fig. 2, but for u2 = 0.5 × 1.5 = 0.75. That some field lines
do not appear closed is only a plotting artifact.
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Fig. 6. As in Fig. 2, but for u2 = 0. In this special case the tail is similar
to the Parker model (1961). u2 = 0 is not a null point, because this is
the position of the singularity. u2 = 0 is only due to the fact that in the
sum of Eq. (64) only a monopole moment appears; see Eq. (68).

If we fix the neutral point, x1, in front of the astrosphere,
we see that for x2 = −x1 = R the fieldline geometry looks like
that of a hydrodynamical counterflow of a cylinder with radius R
(Fig. 2). By displacing the second null point towards the origin,
i.e. for 0 < x2 < −x1 = R, the separatrix breaks up, and a tail-
like channel is formed causing the drop-like shape of the as-
tropause. This tail opens up for a null point approaching the ori-
gin (Figs. 3–5). For x2 = 0, the astrosphere has a typical Parker
shape (Fig. 6). Further displacement to negative values of x2

-4 -2 0 2 4

X

-4

-2

0

2

4

Y

Fig. 7. As in Fig. 2, but for u2 = −0.5 × 1.5 = −0.75. Here, one gets a
region with closed field lines in the downstream direction.
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Fig. 8. As in Fig. 2, but for u2 = −1.5; here we have a neutral point of
second order.

results in the formation of an anti-tailward bubble within the
actual astropause (Fig. 7), leading to a notch in the astropause
nose. This bubble grows until it touches the first neutral point
resulting in a neutral point of second order (Fig. 8). Here, the ab-
solute value of the monopole moment is highest5. A completely
different scenario is shown in Fig. 9. Here, we have only one null
point off the x-axis. This implies a complex circulation Γ, lead-
ing to a spiral structure in the vicinity of the origin and emulating
the Parker spiral. This represents an inner boundary condition
giving a strong azimuthal component (a strong winding) of the
magnetic field in the equatorial plane of the heliosphere.

4.4. Discussion of the mirror symmetric case

In the case of Γr = 0 and C1i = 0, we get an equilibrium that is
mirror symmetric with respect to the x axis. The magnetic null
points read

u =
−Γi

4π BS∞
±
√

C1r

BS∞
+

Γ2
i

16π2 B2
S∞
· (81)

5 Also that of the dipole moment. The fieldlines of that dipole escape
to the right if the second null point is shifted from the right to the left
of the origin, so that the radial “outflow” is stronger compared to the
other images. The displacement of the second neutral point influences
the inner boundary conditions for the field lines.
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Fig. 9. Field lines of the tail model as contour lines of the magnetic flux
function and separatrices for u1 = −1.0 − i = (x, y) = (−1,−1); this is a
potential field with a real valued circulation that shows the existence of
a spiral-shaped field structure in the inner heliosphere, i.e. an azimuthal
component; the thus imitated Parker spiral should extend into the outer
heliosphere. Due to a plotting artifact, not all calculated field lines are
complete.

One can easily see that, if

C1r

BS∞
+

Γ2
i

16π2 B2
S∞
< 0 ⇐⇒ C1r < −

Γ2
i

16π2 BS∞
, (82)

two magnetic nulls occur, which are not lying on the x axis, and
the astrosphere is open with respect to the counterflow direction.

For

C1r = −
Γ2

i

16π2 BS∞
, (83)

only one stagnation point exists. The second null, u = 0, is not a
real null point, but a pole. The first stagnation point is far away
from the origin (i.e. from the star). The dipole part of the outflow,
or the magnetic field, is like the resistance of a flow around an
obstacle. Under the assumption C1r = BS∞R2, we get

u = x =
−Γi

4π BS∞
± R

√

1 +
Γ2

i

16π2 B2
S∞R2

· (84)

For Γi → 0, we get two stagnation points (x = +R and x = −R),
positioned on a circle with radius R. Figure 2 shows that the
fieldlines of this magnetic field are identical to the image of
streamlines of a flow around a body shaped like a circular cylin-
der (keeping in mind the substitution φm → φ, A → ψ, with
W = φ + iψ as the hydrodynamical potential and BS∞ → v∞).
The circle is a separatrix that separates fieldlines of different
topology. This astrosphere, however, would have the disadvan-
tage of being a closed surface (line in 2D), and there would be no
possibility that plasma could flow into the tail. This would imply
a diffusion process, as is described in Neutsch & Fahr (1983).

5. Pure sub- or super-Alfvénic flows

A tangential discontinuity has to form due to magnetic shear,
Here two different, magnetized plasmas encounter. At least,
one has to expect a strong gradient perpendicular to the mag-
netic field involving a non-singular current sheet. For typical
astrophysical plasmas, the structure of such a current sheet
can be derived by solving the coupled system of Vlasov and
Maxwell equations selfconsistently, assuming the symmetry of

the previous section. This kind of translation invariant plasma,
although collisionless, can be considered to follow a quasi-
Maxwellian distribution function, so that we can use the solution
of Harris (1962). Such a current sheet can be seen as the proto-
type of a current sheet separating two plasmas. To enable a con-
stant asymptotic homogenous field and to mimic two astropause
current sheet positions, where the two symmetric branches of
the potential field separatrices should be localized, we choose
the following transformation equation

α(A) =
sign [α′] A
√

1 − M2
A∞

+ a1 ln cosh

A
Bs∞
− y1

d1

+a2 ln cosh

A
Bs∞
− y2

d2
, (85)

with derivative

α′(A) =
sign [α′]
√

1 − M2
A∞

+
a1

BS∞d1
tanh

A
Bs∞
− y1

d1

+
a2

BS∞d2
tanh

A
Bs∞
− y2

d2

=
B∞
BS∞

+
a1

BS∞d1
tanh

A
Bs∞
− y1

d1

+
a2

BS∞d2
tanh

A
Bs∞
− y2

d2
, (86)

where sign[α′] indicates that the asymptotical magnetic field can
be parallel or anti-parallel to the asymptotical flow. Hence, with
Eq. (86),

sign[α′] ≡ sign[B∞]. (87)

This transformation fulfills the symmetric asymptotic boundary
conditions for the magnetic field, given by

lim
y→∞

B = B∞ex = lim
y→−∞

B, (88)

where B∞ is a constant. In the case of an MHS equilibrium,
where

A = BS∞y with BS∞ > 0, (89)

the second term and the third term of Eq. (85), which repre-
sent the outer current sheets, are concentrated around y1 and y2,
which should be the locations of the astropause envelope borders
in 2D (asymptotically). This implies that α′ is the amplification
factor of the static magnetic field

B = ∇α × ez = α
′∇A × ez = α

′ Bs∞ex, (90)

which shows the behaviour of the asymptotic magnetic field if
the magnetohydrostatic field is homogenous. The stationary field
at infinity (x → ∞) can only depend on y because A converges
to a value proportional to y and, therefore, α(A) ∼ α(y). The
symmetric boundary condition Eq. (88) leads then to

a1

d1
= −a2

d2
=: B1, (91)
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which means that the current sheets have different signs (an-
tiparallel currents). The sign of the Jacobian (here α′) must be
unique in the whole domain, as there should be no roots for
a purely sub-Alfvénic or super-Alfvénic flow. In addition, we
make the assumption that 0 < d1 = d2 2 |y1 − y2| and y1 > y2,
y1 = −y2 > 0 for the symmetric case (to ensure a highly sym-
metric equilibrium).

5.1. Examples of noncanonical transformations
for sub-Alfvénic flows

With the above assumptions, Eqs. (86) and (91), we make certain
that
∣∣∣∣∣
dα
dA

∣∣∣∣∣ =
∣∣∣α′
∣∣∣ > 1, (92)

so that the flow is sub-Alfvénic. With condition (91), (92) can be
written as

∣∣∣α′(y = 0)
∣∣∣ =

∣∣∣∣∣∣∣∣∣

sign [α′]
√

1 − M2
A∞

− 2B1

BS∞

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
B∞
BS∞

− 2B1

BS∞

∣∣∣∣∣ > 1, (93)

with

B∞
BS∞

=
sign [α′]
√

1 − M2
A∞

· (94)

This leads to the following restrictions

For B∞ > 0 ⇔ sign[α′] > 0

2B1 < B∞
(
1 −

√
1 − M2

A∞

)
(95)

∨ 2B1 > B∞
(
1 +

√
1 − M2

A∞

)
, (96)

for B∞ < 0 ⇔ sign[α′] < 0

2B1 < B∞
(
1 +

√
1 − M2

A∞

)
(97)

∨ 2B1 > B∞
(
1 −

√
1 − M2

A∞

)
. (98)

The amplification factor α′ of the static asymptotic magnetic
field Bs∞ at the axis of symmetry tells us that a magnetic jump
occurs at the location of the separatrix, because the magnetic
fields from the inside and outside converge to different values.
The strength of the jump is given by

2B1 = B∞ − α′(y = 0)BS∞ = B∞



1 −

√
1 − M2

A∞
√

1 − M2
A,i



· (99)

Therefore, not all values of the inside magnetic field are allowed
if the flow is purely sub-Alfvénic. The inside magnetic field Bi
is given by

Bi = B∞ − 2B1 = B∞

√
1 − M2

A∞
√

1 − M2
A,i

· (100)
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Fig. 10. Regarding the field lines and especially the separatrix (thick
line) one can see that they are not identical with the isocontours of the
electric current plotted in Fig. 11.

Therefore, the polarity cannot change from the outside to
the inside. With Eqs. (100) and (93), we get a lower limit for the
inside magnetic field if the outside magnetic field B∞ and the
outside asymptotical Alfvén Mach number MA∞ are given:

|Bi| >
√

1 − M2
A∞ |B∞| = BS∞. (101)

Boundary conditions for the 1D case are given by the condition
Eq. (100). This implies that the outer and inner Alfvén Mach
numbers are the boundary conditions for Eq. (14), together with
the choice B∞ = const. This determines Bi, which cannot be
prescribed as a boundary condition, since the problem would be
overdetermined. With the above relations we see that the possi-
bility of setting boundary conditions is reduced, due to the reflec-
tion symmetry condition for the magnetic field. We choose the
axis of symmetry in the x–y plane, the x-axis as second bound-
ary, and demand only regularity on the other two boundaries
x = 1 and x = xtail−end. Regularity is guaranteed by the behaviour
of the potential field and the transformation type in this domain.

We can also use the above transformation to fulfill the bound-
ary condition for the asymptotical 1D region of a 2D field. In
this case, the boundary conditions are mapped together with the
mapping of the whole 2D potential field because we know in ad-
vance that this will again be a stationary equilibrium state with
field-aligned incompressible flow. Therefore, if for x → ∞, the
equilibrium converges asymptotically to the 1D equilibria given
by Eqs. (14) and (86), this method can be used. We can take any
of the given potential fields in the foregoing section, if we want
to keep the potential character of the magnetic field in the tail.
This leads then to a 2D sub-Alfvénic equilibrium state, writing

lim
x→∞
α (A (x, y)) = α(A∞), with A∞ = BS∞y. (102)

In Figs. 10 and 11, where we plotted the field lines and sepa-
ratrix and the isocontours of the current density, an interesting
feature of the transformation can be seen: while in magnetohy-
drostatics, where B · ∇P = 0 and j · ∇P = 0 imply that the
current is constant on field lines, so that the current isocontours
coincide with the magnetic field lines, the situation is now com-
pletely different. Comparing Fig. 11 with the fieldlines in Fig. 10,
it can be seen that, asymptotically, the field lines and isocontours
of the current density geometrically converge, but topologically
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Fig. 11. Isocontours of the current density, where the high current iso-
contours are obviously concentrated around the heliopause. The cur-
vature and closure of the current isocontours can be seen clearly in
contrast to the curved, but open separatrix line in Fig. (10); only in the
asymptotical 1D region, i.e. for x → ∞, the lines of maximum current
and the separatrix (astropause) shapes seem to converge.

current density
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Fig. 12. Shown is the current density and its increase towards the inner
astrosphere, i.e. the downwind region of the reverse shock. Also visible
are current sheets with a width of 100 AU.

they are different: while the field lines are open throughout the
tail, the isolines of the current are closing in the vicinity of the
separatrix (i.e. the astropause).

To clearly show these differences in the field lines (Fig. 10)
and the isocontours of the current density (Fig. 11), a finite width
of the current sheet of 100 AU has been used. These broad cur-
rent sheets are visible in Fig. 12 where we have plotted the
strength of the current density, whose absolute value increases
towards the termination shock region.

We now turn to the presentation of an example of a toy model
that might represent the heliospheric tail region. First, we re-
duce the width of the current sheet to a more realistic value. That
thickness can be estimated from the fact that it should be larger
than several ion gyroradii (Neutsch & Fahr 1983; Fahr et al.
1982). The ion gyroradius is at least of the order of 102–103 km,
and we set the width of the current sheet to 10 AU.

x!component of the magnetic field
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2.5
5

7.5
10x

Fig. 13. The x-component of the magnetic field. It rises towards the
location of the termination shock caused by the magnetic monopole.
Clearly visible are the jumps at the locations of the current sheets.

In addition, we can fall back on the measurements and esti-
mated values given in Frisch et al. (2004) (Table 1, Model 2)6.
For the outside magnetic field we take B∞ = 5 µG, for the proton
density ni ≈ ne = 0.1 cm−3 and for the velocity v∞ = 25 km s−1,
so we obtain an interstellar Alfvén Mach number MA∞ ≈ 0.72.
Assuming an inner Alfvén Mach number of about 0.52, the inner
magnetic field in the vicinity of the x-axis becomes about 4 µG.
Taking the relation for the inner magnetic field, Eq. (100) and
d1 = 10 AU, we are able to calculate the transformation, using
Eqs. (86) and (91):

α′(A) =
1

√
1 − M2

A∞




B1

B∞
tanh

A
√

1 − M2
A∞ B∞

− y1

d1

− B1

B∞
tanh

A
√

1 − M2
A∞ B∞

+ y1

d1




, (103)

where for B1 we used the definition given by Eq. (99):

B1 =
1
2
(
B∞ − α′(y = 0)BS∞

)
=

B∞
2



1 −

√
1 − M2

A∞
√

1 − M2
A,i



. (104)

The results for the different parameters are shown in Figs. 13–17,
in Figs. 13 and 14 we plotted the x- and y-components of the
magnetic field in units of 5 µG. Towards the termination shock,
the x-component grows especially around the x-axis because it
is approaching the mapped magnetic monopole. The jumps due
to the current sheet are of the order 1 µG. The y-component of
the magnetic field is not symmetric with respect to the x-axis.
Instead, a gradient arises due to the monopole. The contribu-
tion of the y-component to the total magnetic field strength is,

6 The extreme value of the magnetic field is considered too high by
P. Frisch, but preferred by Cox & Helenius (2003).
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y!component of the magnetic field
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Fig. 14. The y-component of the magnetic field also shows a strong in-
crease in its absolute value towards the termination shock region.
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Fig. 15. Total strength of the magnetic field. The dominant contribution
is from the x-component while, the contribution of the y-component is
almost negligible.

however, very small, as can be seen in Fig. 15 (compared with
Fig. 14). Figure 16 shows the strength of the current density. It
is only different from zero at the locations of the current sheets
where it shows steep gradients. In the last figure (Fig. 17) we
display the behaviour of the Alfvén Mach number in the tail. It
shows a strong gradient at the locations of the current sheets.
This gradient even increases towards the termination shock.

6. Discussion and conclusions

We present a method for calculating nonlinear MHD equilibria
with an incompressible field-aligned flow. This method is ap-
plied to the scenario of a flow of interstellar plasma around the
plasma bubble of a strong magnetized stellar wind. We use the
classical method of conformal mapping of flows around an ob-
stacle as the starting point of our calculations.

We exclude violent structures (shocks) of flows in order
to concentrate on the study of (i) the geometry of the contact

current density
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Fig. 16. The strength of the current density increases steeply towards
the current sheets that have a width of 10 AU. The wavy shape of the
peak current density is not physical but an artefact due to numerics. The
current is normalized to units of 2.65 × 10−17 Am−2.
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Fig. 17. This plot shows the Mach number and its strong gradient across
the heliopause.

surface, (ii) the surface currents that are coupled to the inner and
outer magnetic fields and the Alfvén Mach number as boundary
conditions. The advantage of such a method is its high flexi-
bility in modelling the tail of stellar winds and the surrounding
interstellar medium wind. What we need at least is information
on the singular points (stagnation- and magnetic neutral points),
their numbers, and their orders. Hence, it would be better if in
situ measurement of the magnetic field structure could be made.
Within the next decade, this is only possible for our own astro-
sphere, the heliosphere.

In this paper, we restricted ourselves to thin nonsingular
current sheets that have the special shape of a Harris-sheet or
z-pinch configuration. The validity can only be justified within
a multi-fluid theory or, better, within the framework of kinetic
plasma theory and a detailed knowledge of the plasma environ-
ment in astrotails. Again, this aspect will be studied best obser-
vationally (in the next decade) for our heliosphere.
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As an improvement, additional current sheet structures
should be taken into account, as e.g. the heliospheric current
sheet is believed to extend beyond the heliospheric termination
shock (see e.g. Pogorelov et al. 2004).

Our future aims are to use nonlinear static MHD equilib-
ria as original equilibria, where the correlation between mag-
netic neutral points will be much more complex. In addition, we
have to find mappings with corresponding boundary conditions.
Another important point is the symmetry we have taken into ac-
count: symmetry of such configurations can be broken easily by
an angle between the magnetic field and the probable flow direc-
tion in the vicinity of the heliosphere (see e.g. Frisch 1993). Such
symmetry breaking will probably exclude an axially symmetric
treatment of the problem. Nevertheless axially symmetric static
equilibria can, in priciple, be used. In the case of pole-on coun-
terflows of magnetized stellar winds, axial symmetry should be
applied.

For further investigation, transformations should be used that
allow for transitions from sub- to super-Alfvénic flows per-
pendicular to the magnetic field lines, as briefly described in
Gebhardt & Kiessling (1992). Their application is much more
complicated, as it is necessary to introduce four Euler potentials
for the representation of the velocity and the magnetic field.
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Appendix A: Derivation of the transformation
equations

All solenoidal fields (i.e. vector fields with vanishing diver-
gence) can be described locally by means of two scalar func-
tions f and g

B = ∇ f × ∇g. (A.1)

Applying the scalar product ∇ f or ∇g, it follows that

B · ∇ f = 0, and B · ∇g = 0. (A.2)

Since the potentials f and g are constant on field lines, besides
the pressure in magnetohydrostatic equilibria PS , we can under-
stand P as a function of f and g (i.e. intersections of f = const
and g = const are field lines). We now want to consider the
magnetohydrostatic equations with BS = ∇ f × ∇g, where BS is
the magnetic field of a known static MHD equilibrium. With the
aforementioned equations, it follows that

∇PS =
1
µ0

(∇ × B) × B, (A.3)

and with ∇PS =
∂PS

∂ f
∇ f +

∂PS

∂g
∇g, (A.4)

we can extract the equations of motion

∂PS

∂ f
= ∇g · ∇ × (∇ f × ∇g), (A.5)

−∂PS

∂g
= ∇ f · ∇ × (∇ f × ∇g) . (A.6)

The scalar potentials are often called Euler potentials. Using
unmatched Euler potentials α and β, with f = f (α, β) and
g = g(α, β), it follows from adopting the functional determinant
or Poisson brackets defined as

[ f , g]α,β =
∂ f
∂α

∂g

∂β
− ∂ f
∂β

∂g

∂α
, (A.7)

that the following relation holds:

BS = ∇ f × ∇g = [ f , g]α,β∇α × ∇β := [ f , g]α,β B. (A.8)

Therefore,

µ0 ∇PS = (∇ × (∇ f × ∇g)) × (∇ f × ∇g)
=
(
∇ × [ f , g]α,β∇α × ∇β

)
× [ f , g]α,β∇α × ∇β

=
(
∇[ f , g]α,β × ∇α × ∇β

)
× [ f , g]α,β (∇α × ∇β)

+
(
[ f , g]α,β∇ × (∇α × ∇β)

)
× [ f , g]α,β (∇α × ∇β)

=

(
1
2
∇[ f , g]2

α,β × (∇α × ∇β)
)
× (∇α × ∇β)

+[ f , g]2
α,β∇ × (∇α × ∇β) × (∇α × ∇β)

= [ f , g]2
α,β∇ × (∇α × ∇β) × (∇α × ∇β)

+

(
1
2
∇[ f , g]2

α,β · (∇α × ∇β)
)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
≡0

(∇α × ∇β)

− 1
2

(∇α × ∇β)2 ∇[ f , g]2
α,β

= [ f , g]2
α,β∇ × (∇α × ∇β) × (∇α × ∇β)

− 1
2

(∇α × ∇β)2 ∇[ f , g]2
α,β (A.9)

If we identify the equilibrium magnetic field with

∇α × ∇β ≡ B, (A.10)

the sum of thermal and ram pressure with

PS ≡ Π ≡ P + ρ|u|2/2, (A.11)

and the corresponding equilibrium current density of the station-
ary equilibrium with

∇ × (∇α × ∇β) ≡ µ0 j, (A.12)

we find

∇Π = 1
µ0

[ f , g]2
α,β ( j × B) − 1

2µ0
B2 ∇[ f , g]2

α,β. (A.13)

We recognize the identical form of the last term on the right side
of Eq. (A.13) with the right-hand side of the equation of motion
(Eq. (A.14)), which is

∇Π = 1
µ0

(
1 − M2

A

)
( j × B) − 1

2µ0
B2 ∇

(
1 − M2

A

)
, (A.14)

where we identify the Poisson brackets of Eq. (A.13) with the
Alfvén Mach numer dependent expression in Eq. (A.14). Then it
follows that

1 − M2
A ≡ [ f , g]2

α,β > 0. (A.15)

For non-canonical transformations, the Poisson brackets has a
non-constant value or a value different from unity. For canoni-
cal transformations, the Mach number is zero, or for a constant
and non-unity value of the Poisson brackets, the Mach number
turns out to be constant. It is therefore possible to map known
solutions of the magnetohydrostatic equations with the help of
non-canonical transformations into stationary solutions with a
sub-Alfvénic flow. For MA > 1, we find an analogy with
the equations of incompressible stationary hydrodynamics (see
Gebhardt & Kiessling 1992). Application of the same transfor-
mation as in the case of the sub-Alfvénic equilibrium results in
the same magnetic field and therefore in the same electric cur-
rent. On the other hand, for Mach numbers with M2

A ≥ 2, we
cannot find any sub-Alfvénic Mach number or solution.

The pressure is going to be inverted with respect to the sub-
Alfvénic pressure to become:

Πsuper−Alfvenic = ΠH − Πsub−Alfvenic. (A.16)

Here, ΠH is a background pressure, which guarantees that the
thermal pressure stays positive everywhere and fullfills the phys-
ical conditions (as e.g. vS > vA), as well as the boundary
conditions.

As shown above, it is possible to map known solutions of
the magnetohydrostatic equations via the non-canonical trans-
formations into stationary solutions with sub-Alfvénic flow. If
there exists a non-canonical transformation f = f (α, β) and
g = g(α, β) or α = α( f , g) and β = β( f , g), then those stationary
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fields are given by

B = ∇α × ∇β = 1
[ f , g]α,β

∇ f × ∇g = 1
√

1 − M2
A

BS ,

u =
MA (α ( f , g) , β ( f , g))
√
µ0ρ (α ( f , g) , β ( f , g))

B =
MA( f , g)
√
µ0ρ( f , g)

B

=
MA√

(1 − M2
A) µ0ρ

BS ,

P = Π( f , g) −
M2

A

2
|B|2 = PS ( f , g) −

M2
A

2
√

1 − M2
A

|BS |2,

ρ = ρ( f , g). (A.17)

Appendix B: Trajectories

If f is a flux function, then f is constant on field lines. For ∆A =
−µ0 dP/dA = J(A) and with the help of the implicit function
given by χ = χ(x, y), where χ0 = χ(x, y) = const, it follows
that A(χ) = const. The equation χ = χ(x, y) = const therefore
describes the bundle of the field lines of A(χ).

The equation

∆A =
d2A
dχ2 (∇χ)2 +

dA
dχ
∆χ = −µ0 dP/dA = J (A (χ)) (B.1)

can therefore be regarded as the differential equation for A as a
function of χ, if we have

∂
(
|∇χ|−2 ∆χ, χ

)

∂(x, y)
= 0 (B.2)

in the case of a vanishing current function (i.e. a potential field),
i.e. for J(A) = 0. This results in a non-linear partial differential
equation.

B.1. Radial magnetic fields

For ∆A = −µ0 dP/dA = J(A) = 0 and for radial trajectories,
it follows that, for y/x = const on straight lines, the function
A(χ) = const. χ is thereby regarded as a function of x and y, with
χ(x, y) := y/x. Application of the Laplace operator on A(χ(x, y))
results in

∆A = A′′(χ)
(
y2

x4 +
1
x2

)
+ A′(χ)

2y
x3 = 0

⇒ A′′(χ)(χ2 + 1) + 2A′(χ)χ = 0. (B.3)

The second row of Eq. (B.3) can be expressed as

d
dχ

(
A′ (χ)

(
1 + χ2

))
= 0. (B.4)

Integration leads to

A(χ) = const · arctan(χ) + A0, (B.5)

with A0 as a constant of integration. The function A(χ) can be
expressed in the framework of a 2D multipole expansion with
the help of the imaginary part of the line current, i.e. with the
radial magnetic field (represented by the imaginary part of the
complex logarithm).


