Mira kinematics from *Hipparcos* data: a Galactic bar to beyond the Solar circle

Michael W. Feast^{1*} and Patricia A. Whitelock^{2*}

¹Astronomy Department, University of Cape Town, Rondebosch 7701, South Africa ²South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa

Accepted 2000 April 14. Received 2000 April 3; in original form 2000 January 10

ABSTRACT

The space motions of Mira variables are derived from radial velocities, *Hipparcos* proper motions and a period–luminosity relation. The previously known dependence of Mira kinematics on the period of pulsation is confirmed and refined. In addition, it is found that Miras with periods in the range 145–200 d in the general Solar neighbourhood have a net radial outward motion from the Galactic Centre of $75 \pm 18 \text{ km s}^{-1}$. This, together with a lag behind the circular velocity of Galactic rotation of $98 \pm 19 \text{ km s}^{-1}$, is interpreted as evidence for an elongation of their orbits, with their major axes aligned at an angle of ~17° with the Sun–Galactic Centre line, towards positive Galactic longitudes. This concentration seems to be a continuation to the Solar circle and beyond of the bar-like structure of the Galactic bulge, with the orbits of some local Miras probably penetrating into the bulge. These conclusions are not sensitive to the distance scale adopted. A further analysis is given of the short-period (SP) red group of Miras discussed in companion papers in this series. In Appendix A the mean radial velocities and other data for 842 oxygen-rich Mira-like variables are tabulated. These velocities were derived from published optical and radio observations.

Key words: catalogues – stars: variables: other – Galaxy: kinematics and dynamics – Galaxy: structure.

1 INTRODUCTION

This is the last paper in a group of three (although the first of the group to appear in print) which discuss the Mira-like¹ variables contained in the Hipparcos catalogue (Perryman et al. 1997). In Whitelock, Marang & Feast (2000, hereafter Paper I) infrared (JHKL) and other photometry were discussed and various conclusions reached, including the identification of two distinct groups of oxygen-rich short-period variables: our Short-Period blue (SP-blue) and Short-Period red (SP-red) stars (see also Hron 1991). The SP-blue stars, on the basis of their colours and their kinematics, were identified as an extension of the main Mira sequence to short periods. These stars appear to be the field equivalent of the Mira variables found in globular clusters. On the other hand, it was concluded that the SP-red variables were on evolutionary tracks of which longer-period stars of the main Mira sequence were the end-points, and/or that they were pulsating in a higher mode than the longer-period Miras (see also Section 6 below).

Whitelock & Feast (2000, hereafter Paper II) calibrated the Mira infrared period-luminosity (PL) relation using data from

Paper I and the *Hipparcos* parallaxes. Evidence for a luminosity difference between the SP-blue and SP-red stars of a given period was found, consistent with the conclusions of Paper I. In Papers I and II a discussion was also given of carbon-rich Miras.

The present paper, which is restricted to the discussion of oxygen-rich stars, investigates the Galactic kinematics of Miralike variables on the basis of Hipparcos proper motions and published radial velocities. Previous work has generally either discussed the Galactic kinematics of Miras from radial velocities alone (e.g. Feast 1963; Smak & Preston 1965; Feast, Woolley & Yilmaz 1972) or combined radial velocities with proper motions in a discussion of statistical and secular parallaxes (e.g. Clayton & Feast 1969; Robertson & Feast 1981). The radial velocity discussions established a correlation of asymmetric drift and velocity dispersion with period. The shortest-period Miras (periods less than \sim 145 d) were anomalous, and it was at one time suggested (Feast 1963) that they were overtone pulsators (the bulk of the Miras pulsating in the fundamental). However, as discussed in Paper II, it now seems likely that most Miras are pulsating in the first overtone. The nature of the short-period stars is clarified in Papers I and II and in Section 6 of this paper. The present paper gives improved mean motions and velocity dispersions for Miras as a function of period, and gives further evidence for the distinction between SP-blue and SP-red variables. In addition to asymmetric drift, it is found that Miras, particularly those in the

^{*} E-mail: mwf@artemisia.ast.uct.ac.za (MWF); paw@saao.ac.za (PAW) ¹ The definition of 'Mira-like' is given in Paper I.

Name	и	v	w	V_R	$V_{ heta}$	σ_u	σ_v	σ_w	σ_{V_R}	$\sigma_{V_{ heta}}$
Group 1										
CI Vel	-38.5	-32.8	22.1	-54.0	194.6	37.4	13.1	41.2	28.6	8.8
T Gru	207.1	-147.9	108.3	-205.9	86.0	16.3	10.9	10.8	16.2	8.8
Group 2		<i></i>	20.4		226.4		1.0	5.0		1.0
SW Scl	-5/.5	5.4 126 7	- 38.4	57.5	236.4	5.7	1.0	5.0	5.7	1.0
K Aff V Cet	-76.8	-120.7 -110.3	- 80.5	76.1	91.0	0.0 /1.3	0.2 30.5	8.0 40.0	0.1 41.3	7.0 26.7
X Aur	29.0	-18.8	29.3	-22.7	212.2	5.0	52	40.0	5.0	20.7 4 7
RV Pup	-6.5	-65.8	-44.6	-15.8	164.5	6.5	5.2	6.0	6.6	5.5
S Car	-200.8	-338.1	6.2	206.8	-95.1	2.1	4.8	1.5	2.3	4.9
RR Boo	-38.1	-82.4	9.2	60.6	140.9	22.7	36.0	25.4	28.3	48.0
RZ Sco	-165.4	-120.4	-94.8	161.2	116.6	11.3	24.5	25.1	11.1	19.1
T Her	-81.9	-76.8	-18.5	97.0	145.2	4.4	4.6	4.1	4.5	4.7
W Lyr	-29.3	-131.3	-97.0	40.6	95.7	4.7	4.8	4.5	4.8	4.8
RW Sgr	-14.9	-64.2	36.3	21.9	166.0	5.2	5.0	6.3	5.2	5.2
RT Cyg	-54.7	-113.5	62.1	69.9	109.2	4.7	5.0	4.3	4.7	5.0
K PIC X Mon	-225.7	-219.0 -130.4	18.2 _37.5	61.2	33.0 05.5	2.7	4.5	4.1	2.0	4.2
X Non X Oct	-36.3	-18.8	22.2	24.0	213.9	3.0	4.1	3.0	3.1	2.9 4 3
BZ Vir	-38.4	-4.6	25.6	-6.2	229.5	26.2	24.3	18.9	25.7	15.3
V CVn	3.3	-47.1	17.8	-0.2	183.9	0.8	2.0	4.7	0.8	2.0
S Aql	-85.0	-65.9	-32.0	111.0	148.9	12.7	8.4	13.0	11.5	7.6
XZ Her	376.0	-254.6	-113.9	-291.2	239.0	125.6	130.9	179.7	55.6	55.8
Group 3										
U Cet	8.1	-47.5	47.4	-9.5	183.4	11.4	6.0	7.4	11.3	5.0
T Hor	-40.0	-103.9	29.6	29.0	130.0	4.4	7.1	6.4	4.4	7.7
T Pic	48.1	-114./	80.2 52.7	-66.5	106.8	12.9	9.5	11./	13.0	9.7
I COI S I mi	-33.1	- 39.2	30.5	43.1 -61.0	207.0	5.4 16.6	5.9 7 2	5.4 13.8	5.5 16.5	5.6 7.5
W Cen	-71.0	-90.1	69	61.3	145.6	4.0	4.8	3.2	4.1	4.8
U Cen	11.1	10.4	66.9	-41.8	238.0	5.7	5.3	5.7	5.6	5.4
S UMa	-18.7	-22.0	22.6	31.4	207.5	3.9	4.7	5.1	3.7	4.3
U Vir	-47.5	46.3	-20.2	29.1	279.8	11.0	13.5	7.1	11.5	10.7
R Boo	-80.6	-41.5	-11.8	84.9	187.6	3.6	2.9	4.8	3.6	2.4
T Nor	-43.8	-8.6	-7.5	31.1	224.5	5.3	4.4	4.1	5.3	5.7
X CrB	-9.4	-55.1	-73.9	28.5	173.8	8.1	8.0	6.8	8.1	7.6
U Ser	-86.3	51.4	43.5	102.7	276.8	32.2	37.2	39.3	32.7	24.5
R Dra	-13.0	-140.6	-24.1	19.9 51.2	89.1	3.2	4.5	4.2	3.1 5.0	4.4
RS Her	- 30.3	-30.2 -12.7	02.1	-100.0	210.4	0.0	5.0 5.1	0.2 5.7	5.9	5.9
T Pav	39.5	-43.4	-25.7	-54.0	184.0	4.9 5.8	5.0	53	5.0	4.0 5.1
RU Sor	-54.6	-1845	44 1	54.0	46.7	7.0	6.2	10.0	7.0	6.6
T Aar	22.7	-53.1	31.8	-6.3	179.2	9.1	6.8	10.5	8.9	6.7
RT Åqr	-99.7	-50.7	-34.4	105.4	177.1	7.0	5.5	5.8	7.0	3.3
S Lac	55.4	-45.1	21.3	-35.3	190.8	6.8	5.2	6.9	6.8	5.1
V Cas	-2.2	-30.8	-14.8	11.7	199.8	2.9	4.8	3.1	2.8	4.7
V Aqr	-13.6	-13.5	40.1	20.9	216.9	3.7	3.8	2.9	3.7	3.9
RU Cyg	30.0	6.9	2.0	-21.9	238.8	1.8	5.0	1.4	1.8	4.9
Group 1										
G <i>ioup 4</i> R Tri	-007	-10/	28	06.8	208.0	11	13	45	11	33
T Eri	-747	-65.4	51.5	67.3	168.8	42	37	47	41	3.9
R Ret	-39.9	-26.0	17.1	25.8	207.2	3.6	4.3	3.7	3.6	4.2
X Gem	-29.9	-38.9	-17.7	28.5	192.3	5.1	4.5	6.0	5.1	3.5
V Gem	-21.3	-0.1	-49.6	9.5	231.6	7.6	6.6	10.6	7.9	9.9
V Cnc	-2.5	-9.1	-49.7	-10.3	221.7	14.4	12.8	21.0	14.7	13.4
S Hya	-76.4	-11.0	34.7	58.7	225.3	10.5	6.3	12.4	10.6	6.5
VW Oph	-19.7	93.9	-287.8	89.6	312.9	48.4	107.5	170.6	43.7	149.3
Т Нуа	-7.7	20.2	-9.8	-14.7	250.9	7.7	5.0	6.8	7.8	5.3
v Leo	44.7	-34.5	-1/.3	-54.8	193.9	17.4	8.8	14.1	17.2	5.8
5 Sex	55.4 0.6	-2.6	1.1 15.6	-60.3	225.2	10.4	9.5	10.2	10.1	9.2
т UMa	17.6	-81.3	-56.9	-8.6	243.9 150.4	0.0 7 4	8.0	5.0 6.9	7.2	1.2 8.1
RT Cen	-37.2	-9.8	-24.3	17.4	223.6	82	7.6	7.6	79	73
Y Lib	48.0	-83.7	-46.9	-504	146 5	21.2	21.8	22.4	21.1	9.5
RR Sco	-31.7	-1.4	5.2	30.6	229.8	4.9	2.3	2.4	4.9	1.4
R Aql	75.1	-16.7	-32.3	-71.0	215.7	3.8	3.4	1.1	3.9	3.5
R Sgr	-38.2	-34.1	-43.7	44.7	195.5	5.4	5.5	7.8	5.4	4.9
BG Cyg	-35.4	-96.7	-21.6	43.3	131.9	3.5	4.6	2.6	3.6	4.7

Table 1. Individual space velocities (km s^{-1}) . (a) SP-reds omitted.

Table 1 – continued

Name	и	υ	w	V_R	$V_{ heta}$	σ_u	σ_v	$\sigma_{\scriptscriptstyle W}$	σ_{V_R}	$\sigma_{V_{ heta}}$
R Del	43.9	-79.5	10.8	-32.0	154.5	10.3	7.1	8.8	9.9	7.7
S Del	-19.7	7.8	-0.6	41.4	236.0	7.0	4.9	5.5	6.9	5.1
V Cap	15.0	-54.3	40.5	-2.8	177.3	26.7	26.7	27.3	26.1	25.0
Т Сар Т Тио	51.6	-58.1	-64.8	-36.6	1/6.6	12.7	7.9	12.1	12.6	6.6
T TUC RT Boo	-14.0	-10.9	72.1	-30.0	243.5	4.7	4.0 6.1	5.0	4.7	4.2
RS Dra	-38.8	-28.3	-8.7	27.0 55.4	198.9	3.5	4.6	3.5	3.1	4.5
TY And	16.9	-6.3	-20.4	-0.6	225.3	4.2	4.9	3.6	4.1	4.7
Group 5										
Z Peg	-15.5	-45.9	3.2	25.9	183.9	3.8	4.5	3.6	3.8	4.3
SV And	-61.2	-05.5	55.5 -17.6	-49.7	1/2.4	13.3	8.8 4.0	9.9	13.0	7.8
o Cet	-01.5	-38.8 -49.2	-17.0 -97.3	-55.6	189.1	3.8 2.7	4.0	2.0 4 3	27	0.6
T Ari	29.3	4.6	-26.8	-26.2	236.0	4.1	2.3	3.5	4.0	2.1
RX Tau	70.9	-16.9	-41.9	-73.0	213.4	6.7	10.4	11.1	6.7	8.2
S Col	-54.0	-32.5	-26.6	40.9	201.7	5.4	4.9	4.8	5.4	4.9
V Mon	44.0	-76.5	-21.4	-49.6	152.8	4.5	3.8	3.8	4.4	3.5
S CMi	-39.4	-43.2	-4.3	34.5	188.7	5.1	3.4	4.7	5.1	4.2
AS Pup P. Cor	08.0	19.2	28.0	-80.2	246.7	2.2	4.8	1.5	2.1	4.8
X Hya	-77.1	-49.3	-78.9	68.7	185.1	5.4	4.6	53	53	4.9
R Leo	9.3	-8.8	6.3	-10.7	222.2	2.7	2.5	3.5	2.6	2.5
V Ant	-20.8	19.8	22.3	-5.4	251.6	7.1	5.3	7.6	7.1	5.4
R UMa	-93.4	-38.6	7.3	100.3	188.9	8.6	7.8	8.6	8.6	7.7
X Cen	-42.7	-51.9	0.7	31.1	181.5	4.9	5.0	4.1	4.9	5.0
R Crv	5.6	10.0	-30.2	-22.8	240.0	8.4	8.6	7.0	8.5	5.8
R C VII RX Cen	-14.2	5.5 	-2.0 -48.4	-7.2 -6.3	254.4 184.8	24.7	2.7	4.8	23.0	2.9 16.4
RU Hva	-0.8	-78.7	-80.6	-7.6	152.1	6.5	6.7	7.2	6.4	6.1
U UMi	4.0	0.9	-21.6	5.3	231.8	2.1	3.7	4.0	2.1	3.4
S UMi	-4.5	-61.9	8.8	10.5	168.8	2.3	3.9	3.3	2.2	3.8
RU Lib	-65.0	-35.3	33.1	61.2	196.9	15.7	20.1	20.9	15.5	13.2
Z Sco	-45.9	-3.9	-14.6	43.0	227.7	6.3	8.1	8.8	6.3	9.9
S Her	-5.2	42.0	-24.4 -70.7	15.5	2/3.2	3.9 5.1	3.2	3.9	4.0	3.9
Z Oph	-94.3	80.8	-48.4	137.9	200.0	6.2	10.0	12.8	6.2	10.1
RV Sgr	28.4	-17.4	-0.9	-28.2	213.6	5.3	7.3	10.5	5.3	8.3
X Oph	-63.8	-22.3	26.1	67.6	207.5	11.3	15.5	20.8	11.1	13.2
RT Aql	-6.4	-42.0	-29.9	17.2	188.3	5.2	5.0	5.9	5.2	5.0
RR Sgr	106.2	3.4	9.4	-103.3	235.7	5.1	3.2	5.3	5.1	3.0
RT Sgr	40.2	-27.3	-5.7	-39.7	203.8	6.7	4.3	8.5	6.7	5.2
	-28.5	-09.3	20.3	28.7 	225.8	8.4 9.5	0.4 5 0	10.7	8.4 9.5	7.1 5.2
X Aar	39.8	-2.8	11.2	-26.2	220.0	41.2	31.4	25.5	41.3	13.2
W Peg	10.1	-13.4	13.8	-1.9	217.8	2.2	4.4	3.0	2.2	4.3
S Peg	67.6	-7.4	-10.5	-54.9	227.0	5.3	6.2	5.5	5.3	5.6
TT Mon	12.3	-71.8	75.5	-23.0	158.0	8.5	10.1	14.2	8.8	9.3
VX Aur	-24.0	24.2	-16.6	24.8	255.1	9.4	8.4	19.3	9.4	11.0
UU IUC X Tel	-54.5 17.4	-31.3	-59.7	-43.6	203.8	13.1 64.9	10.9	9.4	12.6	92.0
21 101	17.4	50.4	127.0	-J.U	200.4	JT.7	0.5.7	11.7	05.0	12.0
Group 6										
S Scl	-56.4	5.4	-26.4	56.3	236.4	2.4	0.3	4.9	2.4	0.3
R And	64.0	-10.7	-47.9	-54.9	222.8	9.1	6.9	4.7	9.2	6.0
W And	35.5	-13.3	9.3	-26.9	218.9	4.0	4.0	3.6	3.9	3.4
W Fri	40.0	-113.0	-32.1	-50.1	229.3	0.7 4 7	2.9 4 3	4.3 5.0	0.7 4 7	2.9 4.8
R Cae	13.1	-1.7	-14.9	-22.8	228.5	3.8	4.1	4.0	3.7	3.9
T Lep	55.0	-21.8	8.6	-60.8	207.6	3.8	3.4	3.6	3.8	4.0
U Dor	-57.9	-69.1	30.8	46.3	165.6	4.7	4.7	4.4	4.7	4.7
R Oct	-50.5	-41.3	-37.1	39.5	192.3	3.8	4.4	3.8	3.9	4.3
U Ori	34.6	17.1	-11.6	-35.8	247.9	4.9	2.1	2.6	4.9	1.9
к Lyn R Gam	-13.2	16.0 22.7	5.I _18.0	19.8	246.5 253 5	4.8	5.1 Q 1	0.4 11.6	4.8	9.2
R Cnc	40.5 	23.7 	-18.9 18.7	-32.2	235.5 214.4	0.1 4 3	0.4 2.9	11.0 3.4	0.1 4 3	8.0 3.0
W Cnc	-49.5	-11.0	0.4	44.7	221.0	9.3	3.0	10.2	9.3	3.1
R LMi	12.5	4.0	14.4	-13.6	234.9	4.4	2.1	4.6	4.4	2.0
W Vel	-40.9	-2.9	13.6	27.1	230.2	3.4	4.9	3.0	3.4	5.0
R Com	-1.1	7.2	-1.4	-5.7	238.2	5.4	8.6	5.5	5.1	8.8
к Нуа	-23.7	3.6	12.0	21.6	234.8	2.8	2.9	3.2	2.9	2.9

Table 1 – continued

Name	и	v	w	V_R	V_{θ}	σ_u	σ_v	σ_w	σ_{V_R}	$\sigma_{V_{ heta}}$
S Vir	-14.8	-0.5	21.9	9.8	230.8	3.4	2.7	4.3	3.4	2.4
RS Vir	-22.8	16.0	-0.4	21.5	247.1	4.8	2.5	4.9	4.8	1.7
S Ser	9.4	17.3	15.9	-3.3	248.5	6.8	5.1	6.1	6.8	3.1
U Her	-11.2	-28.8	3.5	15.3	201.9	3.3	2.4	3.4	3.3	2.6
T Sgr	16.2	-20.9	-3.8	-9.2	210.5	5.5	5.0	6.3	5.5	6.2
RR Aql	100.7	-83.0	2.0	-94.7	151.9	7.4	6.2	8.9	7.3	6.8
T Cep	67.1	9.7	6.3	-61.9	242.1	1.4	4.7	1.4	1.3	4.7
S Gru	-51.9	-0.2	-6.7	49.6	231.3	3.7	2.1	4.5	3.7	2.0
R Peg	0.0	0.0	-28.7	10.2	230.8	3.0	4.6	4.3	3.1	4.3
R Aqr	-14.0	-46.8	9.7	15.8	184.1	1.1	2.2	4.7	1.1	2.0
RT Eri	-25.0	-7.3	-12.3	21.6	224.1	5.0	3.8	5.0	5.0	2.4
W Hya	25.9	-35.5	12.0	-27.1	195.3	3.1	2.8	2.7	3.2	2.8
BG Ser	-14.4	16.8	10.5	15.5	247.7	5.3	4.4	5.6	5.3	4.3
AM Cyg	15.9	-75.2	8.9	1.3	156.6	15.2	7.5	17.3	14.6	6.3
TV Cnc	-44.6	-34.6	-190.4	12.7	201.0	120.3	41.4	158.6	129.2	88.7
Group 7										
T Cas	-6.2	-15.5	-6.9	12.4	215.3	2.6	4.4	1.4	2.5	4.3
S Pic	-13.2	-10.6	12.2	0.6	220.8	3.5	4.7	4.6	3.5	4.7
R Aur	-0.7	-5.5	-1.4	3.8	225.5	4.6	3.0	2.7	4.5	2.4
S Ori	-1.3	-29.6	14.7	-2.9	201.4	4.7	4.6	5.5	4.7	4.9
Z Pup	15.9	-17.3	-2.8	-33.8	211.6	19.0	8.5	9.2	19.9	14.8
U CMi	-43.0	-4.4	7.5	25.9	229.2	10.3	6.9	12.3	10.9	11.8
Y Vel	-1.6	11.2	18.3	-20.9	241.3	10.5	5.0	9.1	10.4	5.0
WX Vel	-61.0	-38.6	32.0	38.5	198.1	8.6	5.4	9.5	8.4	5.1
R Cen	-28.7	20.5	2.8	20.2	252.4	3.7	3.8	1.5	3.8	3.9
R Nor	-24.4	9.5	3.9	9.8	241.5	5.5	7.4	7.8	5.4	5.8
RU Her	3.5	2.9	-23.4	4.3	233.9	3.9	3.5	4.4	3.9	4.3
RX Vul	60.8	0.7	-5.6	-41.1	236.0	5.6	5.0	4.4	5.6	5.0
RS Peg	-40.0	-34.6	-22.8	54.6	192.8	9.6	6.4	8.5	9.7	6.2
SS Peg	6.1	-7.8	18.4	11.3	223.0	6.4	5.2	5.9	6.5	5.3
R Cas	-71.0	-6.0	4.4	75.6	223.5	2.2	4.5	1.2	2.1	4.4
RU Aur	26.2	-163.3	166.2	-254	68.0	94	88.9	114 1	99	67.8

(b) Individual space velocities (km s^{-1}) for SP-red stars.

Name	и	v	w	V_R	V_{θ}	σ_u	σ_v	σ_w	$\sigma_{_{V_R}}$	$\sigma_{V_{ heta}}$
Group 1										
SS Cas	4.7	-23.2	-25.8	18.1	207.1	8.9	6.3	10.7	9.2	6.9
W Pup	-76.6	7.6	59.1	46.0	246.3	7.1	5.0	4.5	7.2	5.2
SS Her	9.3	-72.3	-25.6	7.0	158.8	12.4	15.9	16.7	12.2	13.3
SY Her	154.3	-20.7	-59.4	-126.8	227.9	7.8	7.2	8.1	7.5	7.8
R Mic	57.1	13.7	61.9	-47.3	246.8	11.9	9.0	14.6	11.8	9.3
R Vul	5.1	-0.6	14.8	23.4	229.3	5.1	4.9	4.5	5.1	4.9
L ₂ Pup	-113.7	-36.9	89.5	111.7	195.2	1.3	4.7	1.4	1.2	4.7
T Cen	-27.9	-44.2	44.6	19.2	187.9	3.4	3.4	2.7	3.5	3.4
W Cyg	-20.2	-12.4	-16.2	23.5	218.3	0.3	5.0	0.6	0.3	5.0
Group 2										
R Cet	-55.7	1.9	0.6	58.8	232.2	9.3	6.1	7.3	9.3	4.1
R Vir	-26.6	4.9	-19.1	20.6	236.5	2.1	3.5	4.8	2.2	2.9
X Ara	-27.7	-29.7	-31.5	16.5	202.5	26.0	24.3	29.8	23.3	49.7
RY Oph	-91.1	45.3	31.0	110.5	269.1	5.9	7.9	9.4	5.8	6.9
RU Per	34.1	-33.8	2.8	-27.4	198.3	7.0	9.4	9.6	7.2	9.3
Group 3										
RS Lib	27.7	10.0	-22.3	-30.3	240.6	4.8	3.5	4.0	4.8	3.5

period range 145–200 d, show a net motion radially outwards in the Galaxy. This is interpreted as indicating a Galactic axial asymmetry and a concentration of orbits in a bar-like structure, which is an extension of the triaxial Galactic bulge to beyond the Solar circle.

2 ANALYSIS

The present discussion is restricted to Mira-like stars for which we can derive distances and space motions. Thus it is limited to stars for which we have K photometry, proper motions and radial velocities. Distances were derived from the reddening-corrected K magnitudes of Paper I together with a PL relation. Zero-points derived for different samples of Miras from *Hipparcos* parallaxes are given in Paper II. For our main sample of stars, which excludes the SP-red variables, we use the zero-point adopted in Paper II and the relation:

$$M_K = -3.47 \log P + 0.84. \tag{1}$$

This relation, when applied to Miras in the Large Magellanic

Group	No.	\bar{P} (d)	и	υ	w	V_R	$V_{ heta}$
2	18	173	-73 ± 17	-97 ± 20	-11 ± 11	$+75 \pm 18$	133 ± 19
3	24	228	-12 ± 10	-47 ± 11	$+21 \pm 9$	$+12 \pm 11$	184 ± 11
4	26	272	-8 ± 8	-27 ± 6	-5 ± 7	$+8 \pm 8$	204 ± 6
5	40	324	-3 ± 8	-22 ± 5	-12 ± 6	$+4 \pm 8$	209 ± 5
6	32	383	0 ± 7	-14 ± 6	0 ± 3	-1 ± 7	217 ± 6
7	15	453	-14 ± 8	-8 ± 4	$+3 \pm 4$	$+11\pm8$	223 ± 4
2 (-S Car)	17	175	-65 ± 16	-83 ± 14	-12 ± 12	$+67 \pm 17$	147 ± 14

Table 2. Group motions (km s^{-1}) (SP-red stars omitted).

Table 3. Dispersions (km s^{-1}) (SP-red stars omitted).

Group	No.	\bar{P} (d)	Σ_w	Σ_{V_R}	$\Sigma_{V_{ heta}}$	$\Sigma_{V_{ heta}}/\Sigma_{V_R}$	Σ_w/Σ_{V_R}
2	18	173	44 ± 8	73 ± 12	77 ± 13	1.06 ± 0.25	0.60 ± 0.15
3	24	228	44 ± 6	54 ± 8	53 ± 8	0.98 ± 0.21	0.82 ± 0.16
4	26	272	36 ± 5	42 ± 6	32 ± 4	0.76 ± 0.14	0.86 ± 0.17
5	40	324	35 ± 4	49 ± 5	32 ± 4	0.65 ± 0.10	0.71 ± 0.11
6	32	383	18 ± 2	39 ± 5	32 ± 4	0.82 ± 0.15	0.46 ± 0.08
7	15	453	13 ± 3	30 ± 5	16 ± 3	0.53 ± 0.13	0.43 ± 0.12
2 (-S Car)	17	175	46 ± 8	67 ± 12	54 ± 9	0.81 ± 0.20	0.69 ± 0.17

Cloud (LMC), gives an LMC distance modulus of 18.64 mag, compared with the value of 18.70 ± 0.12 based on *Hipparcos* parallaxes of Cepheids (Feast & Catchpole 1997; Feast 1999) or 18.74 ± 0.13 based on Cepheid proper motions and radial velocities (Feast & Whitelock 1997; Feast, Pont & Whitelock 1998). The standard error of this zero-point is 0.14 mag (Paper II). For the SP-red stars we have used the relation:

$$M_K = -3.47 \log P + 0.40. \tag{2}$$

As discussed later, our conclusions are very insensitive to the values of the zero-points adopted.

The *Hipparcos* proper motions and their standard errors were converted into components in Galactic longitude and latitude $(\mu_{l^*} = \mu_l \cos b \text{ and } \mu_b)$ and their errors, using the constants provided in the *Hipparcos* catalogue and taking into account the correlations between the proper motions in right ascension and declination. Then if μ is a proper motion in milliarcseconds and r the distance in kiloparsecs, the corresponding velocity is $\kappa \mu r \text{ km s}^{-1}$, where $\kappa = 4.74047$ (a value also taken from the *Hipparcos* catalogue). The procedure used in deriving the adopted radial velocities for the stars is described in Appendix A. These adopted radial velocities depend on both optical and radio (maser and non-maser emission-line) observations.

The observations were converted into the usual components of the space velocities: u, parallel to, and in the direction of, the Galactic Centre as seen from the Sun; v, at right angles to this in the Galactic plane, and in the direction of Galactic rotation; and w, perpendicular to the plane, in the direction of the north Galactic pole. Velocity components were also calculated in Galactocentric cylindrical coordinates: V_R , radially outwards from the Galactic Centre in the Galactic plane; and V_{θ} , the rotational component in the plane (i.e. relative to a non-rotating point at the Solar position).² The third component in this system remains w. Where necessary we denote the distance of a star from the rotation axis of the Galaxy by R_p . The results have been corrected for local Solar

²Note that, in the sign convention used, $V_R \equiv -u$ at the Solar position.

motion $(u_0 = +9.3, v_0 = +11.2 \text{ and } w_0 = +7.6 \text{ km s}^{-1})$ and a circular velocity of Galactic rotation of $231 \pm 15 \text{ km s}^{-1}$. A value of the distance to the Galactic Centre from the Sun (R_0) of 8.5 kpc was adopted. These various constants are discussed in Feast & Whitelock (1997) and Feast (2000). The resulting velocity components with their standard errors are given in Table 1. These results assume that the standard error of a radial velocity is 5 km s^{-1} . This value was estimated from the data discussed in Appendix A.

The stars are arranged in period groups in Table 1 (the mean periods of the groups are listed in Tables 2 and 3). These groups were chosen on the basis of earlier work using radial velocities which showed the run of kinematic properties with period (e.g. Feast et al. 1972). However, in the present work the SP-red stars identified in Papers I and II have been assigned to groups of their own and are discussed separately.

Mean velocities and velocity dispersions (Σ_i where i = w, V_R or V_{θ}) were derived in each group and are listed in Tables 2 and 3. The mean values of Σ_u and Σ_v do not differ significantly from the values for Σ_{V_R} and $\Sigma_{V_{\theta}}$, and are not tabulated. In this analysis we have omitted those stars for which the standard error of any velocity component is 50 km s⁻¹ or greater. In deriving the mean velocities, weights were assigned to the individual values depending on the standard errors listed in Table 1 and on the velocity dispersion of the group. For this, relations analogous to equations (4) and (5) of Feast & Whitelock (1997) were used. The mean velocities given in Table 2 were obtained by iteration. Initial values for the dispersions in the various groups were adopted from the earlier radial velocity work (Feast et al. 1972). For the final solution, a third-order polynomial fit was made to the various dispersions as a function of period.

Table 4 shows mean velocities in each period group with the PL zero-point changed by ± 0.5 mag from the adopted value. In no case do these mean values differ significantly from the adopted values. Thus our final results and conclusions are not sensitive to the distance scale adopted. Solutions with the reddening estimates put to zero show that the results are also insensitive to the adopted reddenings. Similarly, adopting 0 or $10 \,\mathrm{km \, s^{-1}}$ instead of 5 km s⁻¹

Table 4. Group motions (km s^{-1}) : effect of distance scale change.

	Δ	$M_K = +0.5 {\rm m}$	ag	$\Delta M_K = -0.5 \text{ mag}$			
Group	w	V_R	V_{θ}	W	V_R	V_{θ}	
2	-13 ± 9	$+64 \pm 15$	144 ± 18	-9 ± 14	$+87 \pm 23$	123 ± 21	
3	$+16 \pm 8$	$+9 \pm 9$	192 ± 9	$+27 \pm 11$	$+16 \pm 13$	175 ± 13	
4	-3 ± 6	$+6 \pm 7$	210 ± 6	-7 ± 9	$+10 \pm 10$	196 ± 7	
5	-9 ± 5	$+2 \pm 7$	213 ± 4	-17 ± 7	$+6 \pm 9$	202 ± 6	
6	$+1 \pm 3$	-2 ± 6	220 ± 5	-1 ± 4	$+1 \pm 9$	213 ± 7	
7	$+4 \pm 3$	$+9 \pm 6$	226 ± 4	$+1\pm5$	$+14 \pm 10$	220 ± 5	

Figure 1. (a) The distribution of the Miras projected on to the Galactic plane, omitting the SP-red stars. The Sun is at the origin of the coordinate system. The group number is shown in the corner of each box. (b) The same as part (a) but for the SP-red stars.

for the standard error of a radial velocity makes no significant difference to the results. As one might have anticipated for a group of stars in the general Solar neighbourhood, the mean values of u and v are very similar in each group to the values of $-V_R$ and $V_{\theta} - 231$. In the following we concentrate on a discussion of V_R , V_{θ} and w, since these are the relevant quantities in Galactic terms.

The distribution of the stars in each period group as projected on to the Galactic plane is shown in the various panels of Fig. 1. Fig. 2 shows the V_{θ} versus V_R distributions in each group, and Fig. 3 shows the V_{θ} versus *w* distributions. In these plots, stars for which a velocity component has a standard error greater than 20 km s⁻¹ are shown as open circles.

Figure 2. (a) Plots of V_{θ} against V_R for the Miras in each group, omitting the SP-red stars. Stars for which a velocity component has a standard error greater than 20 km s⁻¹ are shown as open circles. The group number is shown in the lower left-hand corner of each box. In the plot of group 2 the asterisk denotes S Car and the curve shown is discussed in the text. (b) The same as part (a) but for the SP-red stars.

3 THE MIRA KINEMATIC SEQUENCE

The variations with period of the mean values of V_R and V_θ and the various dispersions are shown in Figs 4 and 5. The progressive decrease in the rotational velocity (V_θ) and the parallel increase in the velocity dispersions with decreasing period are generally similar to the results previously derived from (optical) radial velocities alone. These results show that the population to which a Mira-like variable belongs is a function of its pulsation period. This, together with the position of Miras in globular clusters at the tip of the asymptotic giant branch (AGB) and the dependence of the periods of Miras in globular clusters on the cluster metallicity, leads to the conclusion that the Mira period sequence is a sequence of the end-points of AGB evolution as a function of metallicity and possibly age (e.g. Feast & Whitelock 1987, 2000).

A main change from previous discussions concerns the group with periods less than 145 d. This group was always puzzling, since, instead of continuing the relation of kinematics to period found for the longer-period stars, it showed kinematics similar to much longer-period stars. It is, however, now clear from Papers I and II that these stars, in the main, form a distinct class (SP-red stars) in both colour and luminosity, and should not be thought of as part of the normal Mira sequence. These stars will be further discussed in Section 6.

At periods shorter than 145 d there are only two stars in our sample that we classify as SP-blue type, and which should, on the present hypothesis, be part of an extension of the normal Mira sequence to shorter periods, with lower V_{θ} and higher velocity dispersion. These stars are CI Vel (P = 142 d) and T Gru (P = 136 d). T Gru with a space velocity relative to the Sun of 276 km s⁻¹ and $V_{\theta} = 86 \text{ km s}^{-1}$ obviously fits into such a category. The kinematic behaviour of CI Vel is less distinctive. It may be noted that T Gru would not have been recognized as having a high space velocity from its heliocentric radial velocity

Figure 3. (a) Plots of V_{θ} against *w* for the Miras in each group, omitting the SP-red stars. Stars for which a velocity component has a standard error greater than 20 km s⁻¹ are shown as open circles. The group number is shown in the lower left-hand corner of each box. (b) The same as part (a) but for the SP-red stars.

alone, since this is only $+13 \text{ km s}^{-1}$. If Miras in globular clusters are taken as a guide, we would not expect many normal Miras at periods as short as that of T Gru (136 d). The shortest-period star classed as a Mira-like object in a globular cluster is the star V1 in NGC 121 in the Small Magellanic Cloud (SMC), which has a period of 140.2 d (Thackeray 1958). Note the negative values of V_R for T Gru and CI Vel.

4 EVIDENCE FOR A NON-AXISYMMETRIC GALAXY

One of the most remarkable features of Table 2 and Fig. 4 is the consistently positive value of V_R , indicating a net outward motion in the Galaxy. This result is particularly notable for group 2 (period range 145–200 d), which has $V_R = +75 \pm 18 \text{ km s}^{-1}$. Fig. 2(a) plots V_R against V_{θ} for this group. This plot shows that

all but four of the stars in the group have positive values of V_R , and the absolute values of V_R for these four stars are all quite small. The asymmetry in the values of V_R in this group can also be seen in the histogram of Fig. 6. It is clear that as a group these stars are moving outwards in the Galaxy. If the Galaxy were axisymmetric, this would imply a large, real, symmetrical radial motion of this stellar population in the Galactic plane away from the Galactic Centre. This seems inherently unlikely. Equally unlikely seems the hypothesis that this group belongs to some other interacting satellite galaxy. The motion of this interloper would have to be almost exactly in the Galactic plane (see below) and it would also be unclear why there were no Galactic field Miras in this period range. We take the view that the present results provide, in fact, strong evidence for an asymmetry in stellar orbits. Since the group has a rotational velocity less than the circular velocity as well as a net outward velocity, it is easy to see that the kinematics point to a concentration of the current major axes of the Galactic orbits of

Figure 4. The variations with period of (a) the mean V_{θ} and (b) the mean V_R for each group. The filled circles are for the groups of Table 2. The cross represents the SP-red stars.

these Miras in the first quadrant of Galactic longitude, with the stars, in the mean, moving towards apogalacticum.

Whilst it would be desirable to do detailed calculations of orbits in a realistic, non-axisymmetric, potential, one can make a first approximate estimate of a mean orbit as follows. We consider the 'mean' group 2 Mira as moving in an ellipse under the influence of a centrally concentrated mass. Then given V_R and V_{θ} , and with V_c as the circular velocity of Galactic rotation at R_0 , it follows that

$$\cot \phi = (V_c^2 - V_{\theta}^2) / V_{\theta} V_R \tag{3}$$

and

$$e\cos\phi = 1 - (V_{\theta}/V_{\rm c})^2, \tag{4}$$

where *e* is the eccentricity of the orbit and ϕ is the angle at the Galactic Centre between the Sun–Centre line and the major axis of the orbit (towards apogalacticum). The results for the group of mean period 175 d (group 2) then give:

$$\phi = 16^{+10}_{-4}$$
 degrees,
 $e = 0.69 \pm 0.12$.

One also finds that perigalacticum is at 1.7 ± 0.8 kpc and apogalacticum at 9.2 ± 0.7 kpc from the Centre. These results do not change significantly if the zero-point of the PL relation is changed by ± 0.5 mag.

A somewhat better approximation is to use the Galactic potential given by Eggen et al. (1962) and displayed in a Bottlinger diagram by Sandage (1969). Using this model with their adopted value of V_c and simply scaling from their adopted R_0 (10 kpc) to our adopted value gives a perigalacticum of 3.1 kpc, considerably larger than that derived on the point-mass approximation, as might be expected. Apogalacticum is at 9.1 kpc on this model, not significantly different from the point-mass model.

Figure 5. As Fig. 4, but illustrating the mean dispersions, in $\mathrm{km \, s}^{-1}$, in the three coordinates.

Figure 6. Histogram showing the distribution of V_R in group 2 (SP-red stars omitted).

Neither of the above models is realistic, especially if there is significant mass in a bar. There remains considerable uncertainty in the parameters of the non-axisymmetric potential applicable to our Galaxy. Some recent work is mentioned below, and it would be valuable to see whether our first estimate of ϕ from Miras can be improved by a more sophisticated approach.

In deriving the above figures, the star S Car was included in group 2. With $V_R = +206 \pm 2 \,\mathrm{km \, s^{-1}}$, $V_\theta = -95 \pm 5 \,\mathrm{km \, s^{-1}}$ and $w = +6 \pm 2 \,\mathrm{km \, s^{-1}}$, this star is obviously on a highly eccentric

retrograde orbit. If we omit this star from group 2, we obtain the velocity components given in Table 2 and

 $\phi = 17^{+11}_{-4}$ degrees,

 $e = 0.62 \pm 0.10.$

Thus our general conclusions regarding group 2 would not be changed. In contrast to S Car, R Pic, another member of group 2, is on a similar, high-eccentricity, but direct, orbit. In Fig. 2(a) there is a rather clear correlation of V_{θ} with V_R in group 2. We expect such a correlation if the major axes of the orbits are aligned. The curve in the figure shows the expected correlation if the simple approximation of equation (3) holds and $\phi = 17^{\circ}$. Note that the point at $V_{\theta} = -95$ is for S Car and should be ignored for this comparison.³

It is clear from Table 2 and Fig. 4 that the mean value of V_R drops rapidly as one moves from group 2 to Miras of longer period. The results would be consistent with a gradual decrease of V_R with increasing period though groups 3 to 7, but the evidence is marginal. The mean result for these five groups is $V_R = +5.8 \pm 2.4 \text{ km s}^{-1}$, indicating a small asymmetry in the same sense as that of group 2.

Thus the kinematics indicate that the major axes of the orbits of the group 2 Miras in the general Solar neighbourhood are concentrated to the first quadrant of Galactic longitude. There is considerable evidence for a triaxiality in the Galactic bulge - see for instance recent summaries by Tiede & Terndrup (1999) and Sevenster et al. (1999). This evidence will not be recapitulated here, but, in view of the fact that the present paper deals with Mira variables, it is useful to note that one of the earliest pieces of evidence for a triaxial bulge was the space distribution of Mira variables in the bulge region derived from individual distances using a PL relation (Whitelock & Catchpole 1992). Whilst all the evidence on the structure of the bulge has not yet been completely reconciled, authors agree that the major axis of the bulge lies nearest the Sun in the first quadrant of Galactic longitude. This, then, clearly suggests that the concentration of Mira orbits that we have found is an extension of this bar-like distribution out to the Solar radius and beyond.

Using the Bottlinger diagram of Sandage (1969), adjusted as described above, one finds that about half the stars in group 2 have perigalactic distances of $\sim 2 \text{ kpc}$ or less. It seems likely therefore that these stars penetrate into the Galactic bulge.

Although it is agreed by all workers that the long axis of the bulge–bar is in the first quadrant of Galactic longitude, a range of viewing angles have been proposed. A recent summary of derived angles has been given by Sevenster et al. (1999, their section 5). The values range from 16° , derived from the gas dynamics of the central region (Binney et al. 1991), to 44° , derived by Sevenster et al. themselves from radial velocities of OH/IR stars and a Galactic model. There are several determinations that give values in the 20° to 30° range. Our value agrees with that of Binney et al. and would be consistent with somewhat larger values (e.g. in the 20° to 30° range). It is not consistent with the Sevenster et al. value.

As Table 2 shows, the *w* component of the mean motion is not significantly different from zero in any of the groups except,

possibly, in group 3. It is $-11 \pm 11 \text{ km s}^{-1}$ in group 2, and the weighted mean over all groups is $0 \pm 3 \text{ km s}^{-1}$. If the mean orbit of any group was at an angle to the Galactic plane, then the orbital velocity would have a component in the direction of the Galactic pole, which would be apparent in the w velocity. Group 2, which shows a low value of V_{θ} and a large positive V_R , is particularly interesting in this respect. The observed (total) orbital velocity is $153 \pm 26 \,\mathrm{km \, s^{-1}}$. If the orbit were inclined to the Galactic plane, this would be a minimum value. It then follows that the maximum angle at which the mean orbit of group 2 can be tilted from the plane is $-4^{\circ} \pm 4^{\circ}$, where the minus sign indicates that the mean orbit is below the Galactic plane on the Solar side of the Galactic Centre. This is consistent with the results of Dwek et al. (1995), who found, from COBE DIRBE observations, a maximum possible tilt of -2° for the central bulge ellipsoid. Both their result and ours are consistent with zero tilt.

Regarding a local bar-like structure, it may be of relevance to note that some samples of subdwarfs appear to show signs of an excess of out-going Galactic orbits. This can be seen for instance in fig. 23 of Sandage & Fouts (1987), which plots what was regarded as a 'thick disc' sample,⁴ although this was not commented on at the time. Raboud et al. (1998) find that a sample of high proper motion stars with significant asymmetrical drift contain an excess of outward-moving stars and interpret this in terms of a bar model. Dehnen (1998, 1999, 2000) obtains somewhat similar results and interprets them in terms of a bar with an outer Lindblad resonance near R_0 . The effect we find in our group 2 is much more extreme in velocity space than that found in other, less homogeneous, groups of stars. For instance the group 2 Miras would be confined to a narrow locus in the *u*,*v* plane, at the edge of the distribution of old disc stars shown in fig. 3 of Dehnen (1998).

5 VELOCITY DISPERSIONS

Velocity dispersions corrected for observational scatter were derived in the manner described by, e.g., Spaenhauer, Jones & Whiteford (1992). The values and their ratios are listed in Table 3. Whilst a full discussion would need to take account of the nonaxisymmetric distribution of orbits, a number of general points can be made regarding these results. If one obtains mean dispersions averaged over the six groups (weighting the squares of the dispersions by the number of stars involved), one finds $\bar{\Sigma}_w = 34 \pm 2$, $\bar{\Sigma}_{V_R} = 49 \pm 3$ and $\bar{\Sigma}_{V_{\theta}} = 42 \pm 2$. These values, together with a similarly weighted asymmetric drift of $V_{\rm c} - \bar{V}_{\theta} =$ $33 \pm 10 \,\mathrm{km \, s^{-1}}$, are not too different from conventional values for the thick disc (Freeman 1987), viz. 40, 70, 49 and $30-40 \,\mathrm{km \, s^{-1}}$, though the value of $\bar{\Sigma}_{V_{p}}$ is low. However, this comparison does not consider the net positive V_R and the change of kinematic characteristics with period. In fact, the division of Miras by period would seem to provide a finer division into kinematically homogeneous groups than is obtained from most discriminants used to define, e.g., the thick disc.

The ratios $\Sigma_{V_{\theta}}/\Sigma_{V_R}$ and Σ_w/Σ_{V_R} (Table 3) show some evidence of a systematic variation with period. Particularly in the shorterperiod groups these ratios are large compared with those for many groups of stars (see e.g. the data in Mihalas & Binney 1981, their table 7.1). The result for $\Sigma_{V_{\theta}}/\Sigma_{V_R}$ in group 2 is significantly affected if S Car, which has a retrograde orbit, is omitted (see Table 3). Note that, in view of the correlation of V_R with V_{θ} in group 2, the dispersions in this group, at least, cannot be directly

 $^{^{3}}$ It should be emphasized that we are concerned here in presenting the evidence for an alignment of the Galactic orbits of the group 2 stars and with obtaining in a simple way some estimate of the angle of the orbital major axis. Many authors have considered, in a general way, orbits in barred potentials, and the referee has suggested as one possibility that the group 2 stars are on aligned oval orbits that are symmetrical about the Galactic Centre.

⁴Note the different sign convention in *u* compared with the present paper.

fable 5. Group motions	$({\rm kms^{-1}})$	(SP-red	stars).
------------------------	--------------------	---------	---------

Group	No.	\bar{P} (d)	и	υ	W	V_R	$V_{ heta}$
1	9	125	-1 ± 26	-20 ± 9	$+16 \pm 17$	$+8 \pm 22$	214 ± 9
2	5	162	-33 ± 21	-2 ± 14	-2 ± 10	$+36 \pm 23$	229 ± 13
all	15	143	-10 ± 17	-11 ± 7	$+8 \pm 11$	$+15 \pm 15$	221 ± 7
1 (-SY Her)	8	125	-21 ± 19	-20 ± 10	$+26 \pm 16$	$+25 \pm 16$	212 ± 10
all (-SY Her)	14	145	-22 ± 13	-11 ± 8	$+13\pm10$	$+25 \pm 12$	221 ± 8

Table 6. Dispersions (km s^{-1}) (SP-red stars).

Group	No.	\bar{P} (d)	Σ_w	Σ_{V_R}	$\Sigma_{V_{\theta}}$
1	9	125	50 ± 12	65 ± 15	28 ± 7
2	5	162	18 ± 9	50 ± 16	17 ± 2
all	15	143	41 ± 7	59 ± 11	24 ± 7
1 (-SY Her)	8	126	44 ± 11	43 ± 11	29 ± 7
all (-SY Her)	14	145	38 ± 7	45 ± 9	25 ± 7

compared with those expected for axisymmetrical systems. The dispersion of group 2 in V_{θ} corrected for observational error, about the line shown in Fig. 2(a) is $46 \pm 8 \text{ km s}^{-1}$. Also we might naively expect a decrease in Σ_{V_R} relative to the values that would be found in an equivalent axisymmetrical population. Evidently the lack of in-going orbits at the Sun, relative to out-going orbits (an almost total lack of in-going orbits in group 2) will lead to a lower Σ_{V_R} than would be obtained for a symmetrical distribution of orbits. For instance in group 2 the dispersion calculated about $V_R = 0$ is 107 km s^{-1} compared with the actual value (73 km s^{-1}) given in Table 3. Fig. 6 shows a histogram of the individual values of V_R in group 2. The small number of stars involved precludes any strong conclusions regarding the distribution of these values, but they do appear to be quite asymmetric, with a sharp drop at $V_R \sim 0$.

The value of Σ_w in group 2 is slightly, but not significantly, larger than that of the conventional thick disc. One can therefore adopt (see e.g. Freeman 1987) an exponential scaleheight of about 1 kpc or perhaps slightly more for this component. This can be taken as a measure of the (half-)thickness of the Galactic bar in the Solar neighbourhood (note that the Sun is off-centred from the bar). The scaleheight decreases with increasing period, as the eccentricity of the orbits decrease.

6 THE SHORT-PERIOD RED VARIABLES

Some discussion of the kinematics of the SP-red stars was given in Paper I using radial velocity data. Table 1 lists SP-red stars for which we have infrared photometry, radial velocities and *Hipparcos* proper motions. We have analysed these data in the same way as for the SP-blue and other Miras in the earlier parts of this paper. Results for the various Galactic kinematic constants are listed in Tables 5 and 6, and were derived in a similar way to those in Tables 2 and 3. As in the case of the other Mira groups discussed earlier, the mean kinematics derived are not significantly affected by a change in the adopted PL zero-point of ± 0.5 mag.

With the obvious caveat that small numbers of stars are involved, we may draw the following conclusions from Tables 5 and 6: (1) The SP-red star in group 1 do not extend the Mira kinematic sequence to higher asymmetric drifts. (2) The SP-red stars in group 2 have a higher Galactic rotational velocity than SPblue stars in the same period range (Table 2). In Tables 5 and 6,

Table 7. Radial gradients.

Group	\bar{P} (d)	$\mathrm{d}V_R/\mathrm{d}R_\mathrm{p}$	$\mathrm{d}V_{\theta}/\mathrm{d}R_{\mathrm{p}}$
2	173	-3 ± 25	-16 ± 28
3	229	-19 ± 20	-12 ± 19
4	272	$+11 \pm 14$	$+13 \pm 11$
5	324	-25 ± 13	-16 ± 9
6	383	-24 ± 24	$+21 \pm 16$
7	453	-1 ± 24	-11 ± 11
5 (-Z Oph)		-6 ± 16	-5 ± 11

results are given with and without SY Her, which has a high space velocity and a considerable effect on the mean values.

Discussion of the SP-red stars is more complex (and uncertain) than for the SP-blue stars and the normal Mira sequence to which they belong. For these latter stars we know there is a narrow PL relation, and globular clusters lead us to conclude that there is a strong correlation between period and population type (specifically, chemical abundance - Feast & Whitelock 2000). However, we cannot assume that this is true for the SP-red stars. If, as suggested in Paper I, these stars are analogous to the SR variables in metal-rich globular clusters and are on evolutionary tracks that terminate with Miras, there will be a range of periods possible for any given kinematic population. Different SP-red stars of the same period may be evolving into Miras of different periods and thus belong to different kinematic groups. The situation is further complicated by the possibility that some of the SP-red stars may be in a temporary, fainter phase of their helium-shell flash cycle. Despite this, we can say that the SP-red stars are distinct from the normal Mira sequence and are kinematically associated with (a range of) longer-period Miras. Whether they are pulsating in the same mode as normal Miras or in an overtone remains uncertain, although the results of Paper II point to the first alternative.

7 TEST FOR VELOCITY GRADIENTS

Figs 7 and 8 show plots, for each group, of V_R and V_θ against R_p , the distance of a star from the Galactic rotation axis. Estimates of dV_R/dR_p and dV_θ/dR_p (in units of km s⁻¹ kpc⁻¹) were made by fitting straight lines to the observations through the mean points for each group. The results are given in Table 7. Because of the limited range in R_p and the relatively high velocity dispersions, the data do not place any very useful limits on these gradients except to show that they do not differ significantly from zero. The exception to this statement might be the value of dV_R/dR_p in group 5. However, as is evident in Fig. 7(a) the value of dV_R/dR_p derived for this group depends heavily on one point. This is Z Oph, which has abnormal colours for its period (see Paper I). The results without this star show no significant gradient. The mean gradients, weighting the groups by the number of stars they contain, are $dV_R/dR_p = -8 \pm 5 \,\mathrm{km \, s^{-1} \, kpc^{-1}}$ and

Figure 7. (a) Plots of V_R against R_p , the distance of a star from the Galactic rotation axis. Symbols and division into groups as in Fig. 2 (SP-red stars omitted). (b) The same as part (a) but for the SP-red stars.

 $dV_{\theta}/dR_p = 0 \pm 6 \text{ km s}^{-1} \text{ kpc}^{-1}$, and are thus not significantly different from zero.

8 CONCLUSIONS

The space motions of Mira variables derived from radial velocities and *Hipparcos* proper motions confirm and strengthen the previously known dependence of mean Galactic rotational velocity and velocity dispersions on period. In addition we find that Miras in the period range 145–200 d show a net radial motion outwards in the Galaxy. We interpret this, together with the observed rotational velocity, as indicating a Galactic axial asymmetry. The results indicate a concentration of orbits with major axes in the first quadrant of Galactic longitude and at a viewing angle from the Galactic Centre of ~17°. A significant number of Miras with periods in the range 145–200 d have orbits that probably penetrate into the Galactic bulge. We interpret the asymmetry in the Mira orbits as indicating an extension of the bar seen in the Galactic bulge, out to beyond the Solar circle.

The Miras, being old, but relatively short-lived objects $(\sim 2 \times 10^5 \text{ yr};$ Whitelock & Feast 1993), must be tracers of a much larger population of stars. It is clearly of particular interest to identify and study objects which may be associated with Miras in the period range 145–200 d. The globular cluster results (Feast & Whitelock 2000) suggest that such objects will have metallicities in the range $-0.8 \ge [\text{Fe}/\text{H}] \ge -1.3$ and the ages of globular clusters in this metallicity range.⁵ Prime candidates are obviously subsets of RR Lyrae variables and subdwarfs. However, the situation may be complex, especially if there is a significant range in the ages of globular clusters of a given metallicity. Note

⁵Both the absolute and relative ages of globular clusters of different metallicities remain a subject of current debate.

Figure 8. (a) Plots of V_{θ} against R_{p} , the distance of a star from the Galactic rotation axis. Symbols and division into groups as in Fig. 2 (SP-red stars omitted). (b) The same as part (a) but for the SP-red stars.

that Minniti et al. (1997) have suggested that the RR Lyraes in the Galactic bulge are not part of the bar-like population. It may thus be that Miras, which can be divided by period into homogeneous groups of age, metallicity and kinematic characteristics, are the best objects for studying these phenomena.

The space motions of the separate group of SP-red Mira-like variables are shown to be consistent with the interpretation of these stars discussed in Papers I and II.

ACKNOWLEDGMENTS

The work reported herein was based on data from the *Hipparcos* astrometry satellite and from the South African Astronomical Observatory. We are particularly grateful to Veronique Kazie for help in various ways.

REFERENCES

Alcolea J., Bujarrabal V., 1992, A&A, 253, 475

- Alcolea J., Bujarrabal V., Gallego J. D., 1989, A&A, 211, 187
- Balister M. et al., 1977, MNRAS, 180, 415
- Barbier M., Mayor M., Mennessier M. O., Petit H., 1988, A&AS, 72, 463
- Barcia A. et al., 1985, A&A, 142, L9
- Benson P. J., Little-Marenin I. R., 1989, BAAS, 21, 1118
- Benson P. J., Little-Marenin I. R., 1996, ApJS, 106, 579
- Benson P. J. et al., 1990, ApJS, 74, 911
- Binney J. J., Gerhard O. E., Stark A. A., Bally J., Uchida K. I., 1991, MNRAS, 252, 210
- Bowers P. F., Hagen W., 1984, ApJ, 285, 637
- Bowers P. F., Kerr F. J., 1977, A&A, 57, 115
- Bowers P. F., Sinha R. P., 1978, AJ, 83, 955
- Brand J. et al., 1994, A&AS, 103, 541
- Bujarrabal V., Planesas P., del Romero A., 1987, A&A, 175, 164

- Bujarrabal V., Alcolea J., Sanchez Contreras C., Colomer F., 1996, A&A, 314, 883
- Cernicharo J., Alcolea J., Baudry A., Gonzalez-Alfonso E., 1997, A&A, 319, 607
- Cesaroni R. et al., 1988, A&AS, 76, 445
- Chengalur J. N., Lewis B. M., Eder J., Terzian Y., 1993, ApJS, 89, 189
- Cho S.-H., Kaifu N., Ukita N., 1996, A&AS, 115, 117
- Clayton M. L., Feast M. W., 1969, MNRAS, 146, 421
- Comoretto G. et al., 1990, A&AS, 84, 179
- Crocker D. A., Hagen W., 1983, A&AS, 54, 405
- David P., Le Squeren A. M., Sivagnanam P., Braz M. A., 1993, A&AS, 98, 245
- Deguchi S., Nakada Y., Forster J. R., 1989, MNRAS, 239, 825
- Deguchi S., Nakada Y., Sahai R., 1990, A&A, 230, 339
- Dehnen W., 1998, AJ, 115, 2384
- Dehnen W., 1999, ApJ, 524, L35
- Dehnen W., 2000, AJ, 119, 800
- Dickinson D. F., 1976, ApJS, 30, 259
- Dickinson D. F. et al., 1986, AJ, 92, 627
- Dominy J. F., Wallerstein G., Suntzeff N. B., 1985, MNRAS, 212, 671
- Dwek E. et al., 1995, ApJ, 445, 716
- Eder J., Lewis B. M., Terzian Y., 1988, ApJS, 66, 183
- Eggen O. J., Lynden-Bell D., Sandage A. R., 1962, ApJ, 136, 748
- Engels D., Lewis B. M., 1996, A&AS, 116, 117
- Engels D., Schmid-Burgk J., Walmsley C. M., 1988, A&A, 191, 283
- Feast M. W., 1963, MNRAS, 125, 367
- Feast M. W., 1999, PASP, 111, 775
- Feast M. W., 2000, MNRAS, 313, 596
- Feast M. W., Catchpole R. M., 1997, MNRAS, 286, L1
- Feast M. W., Whitelock P. A., 1987, in Kwok S., Pottasch S. R., eds, Late Stages of Stellar Evolution. Reidel, Dordrecht, p. 33
- Feast M. W., Whitelock P. A., 1997, MNRAS, 291, 683
- Feast M. W., Whitelock P. A., 2000, in Giovannelli F., Matteucci F., eds, The Chemical Evolution of the Milky Way. Kluwer, Dordrecht, in press (astro-ph/9911393)
- Feast M. W., Woolley R.van der R., Yilmaz N., 1972, MNRAS, 158, 23
- Feast M. W., Pont F., Whitelock P. A., 1998, MNRAS, 298, L43
- Freeman K. C., 1987, ARA&A, 25, 603
- Gezari D. Y., Pitts P. S., Schmitz M., 1997, Catalog of Infrared Observations, 4th edn, unpublished
- Habing H. J., 1996, A&AR, 7, 97
- Haikala L. K., 1990, A&AS, 85, 875
- Heske A., 1989, A&A, 208, 77
- Hron J., 1991, A&A, 252, 583
- Imai H. et al., 1997, A&A, 317, L67
- Jewell P. R. et al., 1985, ApJ, 298, L55
- Jiang B. W., Deguchi S., Yamamuri T., Nakada Y., Cho S. H., Yamagata T., 1996, ApJS, 106, 463
- Kennan P. C., Garrison R. F., Deutsch A. J., 1974, ApJS, 28, 271
- Kerr F. J., 1962, MNRAS, 123, 327
- Kerschbaum F., Olofsson H., Hron J., 1996, A&A, 311, 273
- Kleinmann S. G., Dickinson D. F., Sargent D. G., 1978, AJ, 83, 1206
- Knowles S. H., Batchelor R. A., 1978, MNRAS, 184, 107
- Le Bertre T., Nyman L.-Å., 1990, A&A, 233, 477
- Lepine J. R. D., Paes de Barros M. H., Gammon R. H., 1976, A&A, 48, 269
- Lepine J. R. D., Le Squeren A. M., Scalise E. Jr, 1978, ApJ, 225, 869
- Lepine J. R. D., Le Squeren A. M., Scalise E. Jr, 1979, Univ. Chile Dept.
- Astron. Publ., 3, 180 Le Squeren A. M., Sivagnanam P., Dennefeld M., David P., 1992, A&A, 254, 133
- Lewis B. M., 1994, ApJS, 93, 549
- Lewis B. M., 1997a, AJ, 114, 1602
- Lewis B. M., 1997b, ApJS, 109, 489
- Lewis B. M., Engels D., 1988, Nat, 332, 47
- Lewis B. M., Eder J., Terzian Y., 1990, ApJ, 362, 634
- Lewis B. M., David P., Le Squeren A. M., 1995, A&AS, 111, 237
- Lindblad P. O., 1966, Bull. Astron. Inst. Neth. Suppl., 1, 77

- Little-Marenin I. R., Benson P. J., 1988, BAAS, 20, 698
- Margulis M., van Blerkom D. J., Snell R. L., Kleinmann S. G., 1990, ApJ, 361, 673
- Menten K. M., Young K., 1995, ApJ, 450, L67
- Mihalas D., Binney J. J., 1981, Galactic Astronomy. Freeman, San Francisco
- Minniti D. et al., 1997, in Ferlet R., Maillard J. P., Raban B., eds, Variable Stars and the Astrophysical Returns of Microlensing Surveys. Editions Frontières, Gif-sur-Yvette, p. 257
- Nyman L.-Ä., Johansson L. E. B., Booth R. S., 1986, A&A, 160, 352
- Nyman L.-Å. et al., 1992, A&AS, 93, 121
- Perry C. L., Bidelman W. P., 1965, PASP, 77, 214
- Perryman M. A. C. et al., 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200. ESA Publications Division, Noordwijk
- Raboud D., Grenon M., Martinet L., Fux R., Udry S., 1998, A&A, 335, L61
- Reid M. J., 1976, ApJ, 207, 784
- Robertson B. S. C., Feast M. W., 1981, MNRAS, 196, 111
- Robinson B. J., Caswell J. L., Goss W. M., 1971, Astrophys. Lett., 7, 163
- Sahai R., Wannier P. G., 1992, ApJ, 394, 320
- Sandage A. R., 1969, ApJ, 158, 1115
- Sandage A. R., Fouts G., 1987, AJ, 93, 74
- Sevenster M., Saha P., Valls-Gabaud D., Fux R., 1999, MNRAS, 307, 584 Silverglate P. et al., 1979, AJ, 84, 345
- Sivagnanam P., Le Squeren A. M., Foy F., Tran Minh F., 1989, A&A, 211, 341
- Sivagnanam P., Braz M. A., Le Squeren A. M., Tran Minh F., 1990, A&A, 233, 112
- Slootmaker A., Herman J., Habing H. J., 1985, A&AS, 59, 465
- Smak J. I., Preston G. W., 1965, ApJ, 142, 943
- Spaenhauer A., Jones B. F., Whiteford A. E., 1992, AJ, 103, 297
- Spencer J. H. et al., 1981, AJ, 86, 392
- Szymczak M., Le Squeren A. M., Sivagnanam P., Tran Minh F., Fournier A., 1995, A&A, 297, 494
- te Lintel Hekkert P., Versteege-Hensel H. A., Habing H. J., Wiertz M., 1989, A&AS, 78, 3999
- te Lintel Hekkert P., Caswell J. L., Habing H. J., Haynes R. F., Norris R. P., 1991, A&AS, 90, 327
- Thackeray A. D., 1958, MNRAS, 118, 117
- Tiede G. L., Terndrup D. M., 1999, ApJ, 118, 895
- Ukita N., Le Squeren A. M., 1984, A&A, 138, 343
- Wallerstein G., 1975, ApJS, 29, 375
- Wallerstein G., Dominy J. F., 1988, ApJ, 326, 292
- Wallerstein G., Fawley W. M., 1980, PASP, 92, 183
- Whitelock P. A., Catchpole R. M., 1992, in Blitz L., ed., The Center, Bulge and Disk of the Milky Way. Kluwer, Dordrecht, p. 103
- Whitelock P. A., Feast M. W., 1993, in Weinberger R., Acker A., eds, Proc. IAU Symp. 155, Planetary Nebulae. Kluwer, Dordrecht, p. 251
- Whitelock P. A., Feast M. W., 2000, MNRAS, in press (Paper II)
- Whitelock P. A., Menzies J. W., Feast M. W., Marang F., Carter B. S., Roberts G., Catchpole R. M., Chapman J., 1994, MNRAS, 267, 711
- Whitelock P. A., Marang F., Feast M. W., 2000, MNRAS, in press (Paper I)
- Yates J. A., Cohen R. J., 1996, MNRAS, 278, 655
- Young K., 1995, ApJ, 445, 872

APPENDIX A: MEAN RADIAL VELOCITIES OF OXYGEN-RICH MIRA-LIKE VARIABLES

A comprehensive catalogue of the radial velocities of Mira variables was published many years ago (Feast 1963). Since that time a great deal of further work has been done, particularly in the radio (millimetre and submillimetre) region. For the purposes of the present paper, an updated catalogue was required. The literature was therefore searched for radial velocity measurements of oxygen-rich Mira-like variables. A useful initial source of

Figure A1. The differences between radial velocities measured in various ways as a function of period.

reference (although it does not give velocities) is the catalogue of stellar masers by Benson et al. (1990). In the case of optical data, the adopted measures refer to absorption lines. Where only optical emission lines were measured, these were reduced to effective absorption-line velocities as described by Feast (1963) or in the equivalent scheme of Smak & Preston (1965). For a few stars there are rather extensive studies of the variation of (optical) radial velocities with phase, with excitation level of the lines used, etc. In some cases a mean was taken of such measures. In others, we have preferred to use a velocity from one of the few major optical radial velocity programmes on Miras. This gives greater confidence that all the results are on the same system. The radio observations depend on both masing and non-masing emission lines and involve the molecules OH, H_2O , SiO, CO and (for a few stars) SO.

In the case of OH, the maser lines are generally double-peaked. The standard model for this structure (e.g. Habing 1996) indicates

Table A1. Radial velocity comparisons (km s^{-1}) .

Method	No.	Mean difference	Dispersion
OH-optical	77	-3.9 ± 0.7	6.4
$OH-H_2O$	95	$+0.8\pm0.4$	4.1
OH-SiO	72	-0.4 ± 0.4	3.6
OH-CO	33	-1.1 ± 1.0	5.7
SiO-optical	107	-4.9 ± 0.6	5.9
H ₂ O-optical	87	-4.5 ± 0.6	5.9
SiO-CÔ	51	-0.2 ± 0.4	2.6

that the mean of the two peaks is the true radial velocity of the star, and the zero-point of the system adopted here is based on these means. For a significant number of stars there are measures of radial velocity by two or more different methods. These are used in the comparisons shown in Fig. A1. Mean differences based on the data in these figures are given in Table A1. Within the

Table A2. Radial velocities.

Name	P (d)	Var	Sp	RV $(km s^{-1})$	<i>K</i> (mag)	Method	References
R And	409	М	S	-18	0.01	Op,SiO,CO	1,10,14,44,49
T And	280	М	Me	-89	3.12	Op	1,28
U And	346	M	Me	-10		Op	1
V And W And	257	M	s	+15 -35	0.56	Op Op SiO CO	1 14 24 32 49
X And	346	M	Se	-9	3.05	On	1,14,24,32,49
Y And	220	M	Me	-9	5.05	Op	1
RR And	328	Μ	Se	-77	3.08	Op	1
RU And	238	SRa	Me	-45		Op	2
RW And	430	М	M/S	-21	1.81	Op	1
RY And	393	M	M8	-8	2.09	OH,H ₂ O	30,53
SV And	310	M	Me	-97 -73	2.00	Op,SIO	5,15,52
TV And	113	SRb	Me	-59	2.47	Op	1
TY And	260	SRb	Me	-9	1.65	Op	2
UZ And	314	Μ	Me	-43		Op	1
YY And	227	Μ	Me	-93		Op	3
AH And	480	М	Me	-16	2.90	Op	3
AI And	326	M		-95		Op	3
AA And BD And	579 141	M		-16		Op	3
BU And	382	M	Me	-13	0.65	H ₂ O	30
EY And	360	M	M	-50	1.95	OH,H ₂ O,SiO	29,30.54
KU And	750		М	-28	2.70	CO	44
T Aps	261	Μ	Me	+64	3.34	Op	1
WW Aps	267	М	Me	+11	3.45	Op	1
V Ant	302	M	Me	-4	2.10	Op,OH,H ₂ O	1,29,43,45,55
K Aqr	387	M	M/P Mo	-23	1.02	Up,SiO	1,0,14,15,32,50,57,58
T Aar	202	M	Me	-41	3.24	Op	1
V Aar	244	SRb	Me	-44	0.58	Op.H ₂ O	1.30
W Aqr	381	М	Me	-16	1.71	Op,SiO	1,15,32,58
X Aqr	311	Μ	S/M	+7	2.95	Op	1
Z Aqr	135	SRa	Me	+66	3.66	Op	1
RR Aqr	182	M	Me	-184	5.57	Op	1
KI Aqr	246	M	Me	-35	2.17	Op	1
TX Aar	346	M	IVIC	$-26^{\pm 2}$	4.82	Op	48
XX Aqr	334	M	M4	-62	3.84	OH	35
AV Aqr	251	Μ	M?	-75	6.81	Op	3
HY Aqr	310		M8	-20	4.87	Op	48
R Aql	284	Μ	Me	+30	0.76	Op,OH,H ₂ O,SiO,CO	1,6,9,10,13,14,24,27,28,29,30,31,32,43,57,58
S Aql	146	Sra	Me	-108	4.32	Op Or SiO CO	5
W Aqi X Aqi	490 347	M	Se Me	-37	0.61	0p,\$10,C0	1,5,14,44,57
Z Aql	129	M	Me	-7	5.18	On H ₂ O	1 8 59
RR Aql	394	M	Me	+13	0.50	Op,OH,H ₂ O,SiO,CO	5,9,14,29,30,31,32,40,43,44,49,58
RS Aql	410	Μ	Me	$^{-2}$	2.22	Op,H ₂ O	1,15
RT Aql	327	Μ	M/S	-47	1.13	Op,OH,H ₂ O,SiO,CO	1,16,24,30,31,32,43,58
RU Aql	274	M	Me	+19	3.03	Op	1
RV Aql	218	M	Me	-73	4.32	Op	5
SS Agl	200	M	M6	+00 -18		Op	3
SU Aql	393	M	S	+49		Op	3
SV Aql	252	М		-68		OH,H ₂ O	19,20,34
SW Aql	247	Μ		+6		Op	3
SY Aql	355	М	Me	-67	2.24	Op,OH,H ₂ O,SiO	1,19,20,27,29,30,31,43,56
TU Aql	270	М	М	-59	2.36	Op	3
TV Aql	243	M	Me	-55	2.25	Op	3
WZ Aqi XV Aqi	310 423	M	Mep M8	+10 -62	2.23	Op	3
AK Aal	298	M	Me	-57	2.70	Op	3.46
EU Aql	321	M	M	+56	2.59	H ₂ O	8
GK Aql	196	Μ		+32		Õp	3
GO Aql	154	Μ		-46		Op	3
GY Aql	204	SR	Me	+18	0.31	OH,SiO,CO	14,36,44,56,58,60
QU Aql	607	M	Se	+25	4.02	Op	3
v 355 Aql V386 Aql	33/	M	M	$^{+8}_{+30}$	0.84 4.06	Op	3
V397 Aql	183	M	171	+72	1.00	Op	3

Name	Р	Var	Sp	RV	Ē	Method	References
	(d)		I	$({\rm km}{\rm s}^{-1})$	(mag)		
V430 Aql	266	М		+77		Op	3
V436 Aql	285	Μ	Me	-24		Op	3
V437 Aql	192 270	M	Мө	+20 -11		Op Op	3
V438 Aql V442 Aql	308	M	M	-44		Op	3
V455 Aql	350	Μ	Μ	-89	4.04	OH,H ₂ O	19,20,34
V456 Aql	350	M	м	+10		Op	3
V400 Aql V503 Aql	428	M	M	- 7 - 88		Op	3
V514 Aql	291	M		-73		Op	3
V517 Aql	305	М		+20		Op	3
V530 Aql V533 Aql	366 354	M M		+23 + 44		Op	3
V540 Aql	308	M		-84		Op	3
V545 Aql	243	Μ		-85		Op	3
V580 Aql	150	M	Me	-39	5.00	Op Op	3
V581 Aq1 V592 Aq1	197	M		-61		Op	3
V595 Aql	241	Μ		+40		Op	3
V635 Aql	166	M		-25		OH	34
V6/1 Aq1 V707 Aq1	221 259	M		+54 -113		Op	3
V867 Aql	195	M		-47		Op	3
V893 Aql	316	Μ	Me	-46		Op	3
V1133 Aql V1300 Aql	405 680	М	м	$+32 \\ -32$	2 30	OH Sio Co	16 44 58
U Ara	225	М	Me	-73	3.67	Op	1
X Ara	175	Μ	Me	-9	2.42	Op	1
RR Ara	205	M	Me	-49	2.02	Op Or U O	1
K Ari S Ari	292	M	Me	+104 -30	5.95 4.63	Op,H ₂ O On	1,15,59
T Ari	316	SRa	Me	+4	0.17	Op,SiO,CO	2,15,24,61
U Ari	371	М	Me	-44	1.22	Op,OH,SiO,CO	1,24,32,43,58
Z Ari RU Ari	339	M M	M M	-47 + 28	3 37	Op Op OH H ₂ O	3 3 8 12 17 19 20 29 43
YZ Ari	447	101	M8	+25	3.66	OH	37,51
R Aur	457	М	Me	+1	0.94	Op,SiO,CO	1,24,32,44,49
U Aur W Aur	408 274	M	Me Me	+15 -133	0.99	Op,OH,H ₂ O,SiO,CO	1,24,30,43,61
X Aur	163	M	Me	-21	3.23	Op	1
RR Aur	307	Μ	Me	+22		Op	1
RS Aur	170	SRa	Me	+15	1.02	Op On OU SiO	1
SW Aur	309	M	Me	-31 + 10	1.02	Op,OH,SIO On	1,41,45,50
SZ Aur	454	Μ	Me	+14	1.18	Op,SiO	3,41
VX Aur	322	M	M4	+21	1.66	Op	3
VY Aur AC Aur	402 311	M M	M/e Me	+19 -25	2.72	Op On	3
AQ Aur	334	M	M7	+44	2.89	SiO	41
AW Aur	695	Μ	Μ	-2	2.34	Op,SiO	3,41
AY Aur BN Aur	186 136	M M	М	-17 + 12	2.86	Op	3
BS Aur	462	M	М	+12 + 27	2.33	SiO	41
BT Aur	560	Μ	Μ	-6		Op	3
DT Aur	169 252	M		+8 - 40		Op Op	3
GN Aur GU Aur	235 217	M		$-40 \\ -29$		Op Op	3
NV Aur	635		Μ	+2	3.18	OH,SiO,CO,H ₂ O	26,29,32,36,37,44,62,63
R Boo	223	M	Me	-59	2.11	Op,H ₂ O	1,30
5 B00 U B00	270 201	M SRb	Me Me	-18 + 17	5.39	Op On	1
V Boo	258	SRa	Me	-41	0.90	Öp	1
Z Boo	281	М	Me	+38	3.71	Op,OH,H ₂ O	1,15,31
KK Boo RT Boo	194 273	M M	Me Me	-46 + 35	5.28 2.56	Ор H.O	l 15
RX Boo	340	SRb	Me	-12	2.30 1.93	Op,H ₂ O,SiO,CO.SO	6,9,10,14,18,25,30,31,32,33.44.58
R Cae	391	Μ	Me	+22	0.59	Op,OH,H ₂ O,SiO	1,43,54,55,64
R Cam	270	M	Se	-37	0.41	Op On SiO	1
V Cam	575 522	M	Se Me	$^{-15}$ +1	1.49	OP,SIO OH,H ₂ O,SiO.CO	1,14 10,14,30,36,40.43.49.53

Table A2 – continued

Name	<i>P</i> (d)	Var	Sp	$\frac{\text{RV}}{(\text{km s}^{-1})}$	<i>K</i> (mag)	Method	References
X Cam	143	М	Me	+12		Op	1
RT Cam	366	M	Me	-38	2.13	H ₂ O	8
R Cnc	361	M	M Me	$^{+11}_{+28}$	0.36	SiO,CO,SO On OH H ₂ O SiO CO	10,14,52,53,50,40,44,49,56
U Cnc	304	M	Me	+68	4.64	Op,011,1120,510,000	1
V Cnc	272	М	Se	-9	3.14	Op	42
W Cnc	393	М	Me	+43	1.04	Op,H ₂ O,SiO,CO	1,10,14,24,30,32,56
RS Cnc	120	SRc?	M/S	+13	1.70	CO	49
SZ Chc	366	M	M7	-24 -10	4 63	Op	3
UY Cnc	228	M	M	-17	2.99	H ₂ O	15
R CVn	328	М	Me	-12	0.63	Op,SiO	1,15,28,32,56
T CVn	290		M/S	+9	2.04	Op	46
U CVn V CVn	345 101	M SPa	Me Me	-33	2.84	Op,OH,H_2O	1,30,31,43
RT CVn	253	M	Me	-12	1.22	On	1,8,50,00
SU CMa	248	M	M	-14		Op	3
TT CMa	314	М	S	+59	3.51	SiÔ	41
DL CMa	345	М	Me	+51		H ₂ O	15
S CMi	332	M	Me	+65	0.48	Op,SiO,CO	1,10,24,56
I CMI II CMi	528 413	M	Me	+51 + 51	2.61	Op	1
V CMi	366	M	Me	+31 + 33	1.98	Op	1
UW CMi	340	М		+10		Op	3
VV CMi	334	М		+74		Op	3
VX CMi	272	M	Me	+46		Op	3
WY CMi	274	M		$^{+79}_{+41}$		Op	3
WZ CMi	316	M		+57		Op	3
Т Сар	269	М	Me	+42	3.24	Op	1
V Cap	275	М	Me	-37	3.47	Op	1
W Cap	209	M	Me	+12	5.24	Op	1
Z Cap RR Can	181	M	Me	-65 -64	3.24	Op	1
RU Cap	347	M	Me	-3	2.82	OH	43
TX Cap	129	М	Me	+8		Op	3
R Car	308	М	Me	+23	1.35	Op,SiO	1,65
S Car	149	M	Me Mo	+283	1.87	Op	1
R Cas	430	M	Me	+18	1.79	Op OH H ₂ O SiO CO SO	1 6 10 14 24 28 30 31 32 33 36 40 43 44 49 57 58
S Cas	612	М	Se	-41	1.93	Op,SiO,CO	1,14,44,49,57
T Cas	444	Μ	Me	-14	1.04	Op,SiO,CO	1,10,14,24,32,44,58
U Cas	277	M	Se	-48	2.45	Op	1
V Cas	228 413	M	Me Me	-35 -22	0.92		1,32,00 1 10 14 30 31 32 43 58
Z Cas	495	M	Me	-38^{22}	2.04	Op.SiO	1,32,56,58
RR Cas	300	М	Me	-49		Op	1
RV Cas	331	М	Me	-74	2.07	Op,SiO	1,32
SS Cas	140 645	M M	Me M	-22	3.24	Ор	1 30.31
WY Cas	476	M	Se	$^{-07}$ +2	2.42	H_2O H_2O SiO	14 15
EO Cas	455	M	Se	-51	21.12	SiO	14
IW Cas	396	Μ	Se	-24		Op	3
R Cen	546	M	Me	-33	0.70	Op	1
T Cen	90 220	SRa M	Me Me	+29 + 10	2.50	Op	l 1
W Cen	201	M	Me	+10 + 56	1.95	Op	1
X Cen	315	M	Me	+36	1.11	Op,SiO	1,50
RS Cen	164	Μ	Me	+55	3.48	Op	1
RT Cen	255	M	Me	-30	2.69	Op Op OU	1
KA Cen	327 260	M	Me	-2 + 3	2.77 1.80	Op,OH	1,45 1.64
VV Cen	199	M	Me	+3	4.82	Op,1120	1
VX Cen	307		Se	-59	0.50	Öp	1
AL Cen	125	SRa	Me	+96	3.72	Op	2
AQ Cen	387	M	Me	+2	1.68	OH,SiO	15
V3/U Cen V491 Cen	403 202	M SR9	M Me	+24 -52	1.83	SIU On	50 1
T Cep	388	M	Me	-16^{32}	1.70	Op,OH,SiO.CO	1,10,14,15,24,28.32.44.57.58
X Cep	535	M	Me	$+16^{-1}$	2.40	Op,SiO	1,32

Name	Р	Var	Sp	RV	Ē	Method	References
	(d)		. 1	(kms^{-1})	(mag)		
Y Cep	332	М	Me	-4		Ор	1
RT Cep	621	М	М	-53	1.49	CÔ	44
RY Cep	149	M	Me Mo	-120	2.51	H ₂ O	59
AG Cep AM Cen	333	M	M	-63	2.51	H_2O	15 30 31
CU Cep	700	M	M	-63	2.03	H ₂ O	8
GH Cep	331	Μ	Μ	+24	2.48	H_2O	8
R Cet	166	M	Me	+41	2.54	Op,OH,H ₂ O,SiO	1,8,43,66,67
S Cet U Cet	320 234	M	Me	+29 -31	3.30 2.77	Op Op H ₂ O SiO	1 30 66
V Cet	257	M	Me	$+50^{-51}$	4.23	Op	1,50,00
W Cet	351	Μ	Se	+7	2.09	Op	1
X Cet	177	M	Me	+58	4.23	Op	1
Z Cet RY Cet	184 374	M	Me	$^{+1}$	5.18 2.71	Op	1
o Cet	332	M	Me	+58	2.45	Op,H ₂ O,SiO,CO	1,8,10,14,24,28,30,32,44,49,56,58
R Cha	334	Μ	Me	-20		Op	1
R Col	327	M	Me	+65	2.71	Op	1
S Col	325	M	Me Me	+ 79 + 54	1.60	Op,OH,SIO	1,38,43
UV Col	445	IVI	M9e	-5	3.19	Op	48
UW Col	316		M8	+48	4.03	Op	48
R Com	362	М	Me	-7	2.21	Op,OH,H ₂ O,SiO	5,30,43,66
T Com	406 147	M	Me Me	+15 -23	3.13	Op,OH,H ₂ O	3,19,27,29,30,31,43
RR CrA	280	M	Me	-91		Op	1
RY CrA	195	Μ	Me	+21	6.87	Op	1
RZ CrA	460	Μ	Me	-91		Op	1
UX CrA	347	M	Me Mo	-40 + 70		Op	1
AM CrA	123	SR	Me	+70 - 39	0.23	Op	1 2
S CrB	360	M	Me	-14	0.32	Op,OH,H ₂ O,SiO,CO	1,6,10,13,14,24,25,28,29,30,31,43,44,58
W CrB	238	Μ	Me	+18		Op	1
X CrB	241	M	Me	-105	3.66	Op	1
Z CrB RY CrB	250 90	M SRb	Me M10	-81 + 21	4.15	Op H ₂ O	1 68
R Crv	317	M	Me	-26	1.88	Op	1
T Crv	401	Μ	Me	-24	2.66	Op	3
U Crv	283	M	Me	+10	4.34	Op	3
V Crv ST Crv	193	M	Me	+18/ +70	7.40	Op	3
R Crt	160	SRb	M7	+18	1.28	Op,OH,H ₂ O,SiO,CO	6,7,9,10,13,14,15,18,25,30,31,60
S Crt	155	SRb	Me	+42	0.77	H ₂ O	30,31
RT Crt	342	М	Μ	+37	4.49	Op	3
R Cyg	426	M	Se	-33 -22	1.33	Op,SiO	1,14
W Cvg	131	SRb	Me	-21^{22}	1.38	Op.CO	1.47
Z Cyg	263	М	Me	-166	2.46	Op,OH,H ₂ O,SiO,CO	1,8,24,28,29,30,31,43,66
RT Cyg	190	M	Me	-118	3.28	Op	1,5
RU Cyg ST Cyg	233	SRa M	Me Me	- / - 18	0.02	Op	2
ST Cyg SX Cyg	411	M	Me	-16	2.08	Op.SiO	1.32
TU Cyg	219	Μ	Me	-83		Op	1
TY Cyg	349	Μ	Me	+47		Ор	46
UX Cyg	565	M	Me M7	-16 -54	1.97	Op,OH,H_2O,SiO,CO	1,27,29,30,31,32,43,44,53,58
AC Cyg	296	M	M	-65	0.32	Op,H ₂ O	3
AM Cyg	370	M	Me	-81	1.86	Op	3
AT Cyg	264	Μ	Me	+36		Op	3,46
AU Cyg	435	M	Me	-3	1.19	OH	16
BU Cyg BL Cyg	352	M	M	+35	1.00	On	8
BU Cyg	157	M	M	-28	5.87	Öp	3
CU Cyg	213	М	M6e	-87		Op	46
CZ Cyg	278	M	3.4	-57	2.61	Op	3
DR Cyg	527 313	M M	M Me	-26 + 1	2.01 2.72	H ₂ U On H ₂ O	15 3.8
DV Cyg	149	SR	1110	-55	2.12	Op	3
EH Cyg	280	М	Me	+33		Ōp	3
FF Cyg	323	Μ	Se	+13	2.35	Op	3

Name	P	Var	Sp	RV	Ē	Method	References
	(d)			(km s ⁻¹)	(mag)		
FM Cyg	269	М	М	-49		Op	3
FP Cyg	211	M M		-190		Op	3
пд Суд КМ Суд	334	M	м	-11 -24		Op	3
LL Cvg	211	M	141	-38		Op	3
V369 Cyg	104	М	Me	-148		H ₂ O	67
V378 Cyg	295	Μ		+45		Op	3
V391 Cyg	405	М	М	-40	2.76	OH,H ₂ O	15,8
V394 Cyg	422	M	м	-40		Op	3
V419 Cyg V468 Cyg	220 485	M	M	-181 -62	2.11	Ор ОН Н-О	5 15 31
V557 Cvg	382	M	M	+35	2.65	OH,H ₂ O	8.15
χ Cyg	408	M	S/M	-8	1.91	Op,H ₂ O,SiO,CO	1,6,7,14,24,25,32,36,44,56,57,58
R Del	285	Μ	Me	-48	1.93	Op,H ₂ O,SiO	1,8,66
S Del	277	Μ	Me	-14	2.08	Op	1
T Del	332	M	Me	-11	2.98	Op	1
V Del	222	M	Me	-50	2.74	Op	5
Z Del	304	M	Se	+29	2.07	Op	1
RW Del	237	Μ	M	+22		Op	3
SZ Del	235	Μ	Me	-5		Op	3
TV Del	217	Μ		-152		Op OUVU O	3
UW Del	409	M	М	+11		OH,H ₂ O	17,19,20,34
AG Del	520 230	M	м	$^{+08}_{-23}$		On On	19,20,34
BB Del	239	M	101	+47		Op	3
BD Del	262	M	Me	-23		Op	3
BR Del	336	Μ	Me	-72		Op,OĤ,H ₂ O	3,17,19,20,29,34,43
EP Del	430	М		+53		Op	3
R Dor	338	SRb	Me	+21	4.03	Op,H ₂ O,SiO	1,6,55,70,71
I Dor U Dor	108	M	Me	-11 +48	3.61		1 1 45 49 50
RX Dor	335	M	M7	+39	4.09	Op	48
R Dra	245	М	Me	-135	2.23	Op,H ₂ O	1,8,30
U Dra	316	Μ	Me	-1	1.86	Op,H ₂ O,SiO	1,8,15,66,67
V Dra	278	М	Me	+12		Op	1
W Dra	278	M	Me Mo	-22 +18		Op	1
RS Dra	282	SRa	Me	$^{+10}$	1.96	Op	1
RU Dra	202	M	MSe	0	1.90	Op	46
SV Dra	256	Μ	Me	+22		Op	1
WZ Dra	401	Μ	Me	-52	2.99	Op	1
YZ Dra	347	M	Me	-1	1.96	OH,H ₂ O	15,31
R Equ	260	M M	Me Mo	-55 -105		Op	1
RR Equ	211	M	wie	-103 -48		Op	3
T Eri	252	M	Me	+42	2.42	Op	1
U Eri	274	Μ	Me	-36	4.50	Op	1
W Eri	376	Μ	Me	+18	1.51	Op,OH,H ₂ O,SiO	1,30,31,43,55,61
RS Eri	296	M	Me	+66	1.22	H ₂ O	12
KI Eri SS Eri	370	M	Me M5	$^{+40}_{\pm 48}$	0.39	H ₂ O On	12
SX Eri	282	M	IVI.J	+74	4.55	Op	3
TW Eri	322	M	М	+55	2.62	Op	3
WZ Eri	400	Μ		+23		H ₂ O	8
BD Eri	336	М	Me	+5	1.98	H ₂ O	15
EY Eri	456		M8	+30	5.54	Op,OH	48
UU For P. Com	480	м	M9 So	+6 -44	0.98	CO	49
S Gem	293	M	Me	+106	2.96	Op.OH.H2O SiO	1.8.15.30 66 67
T Gem	287	M	Se	+18	3.54	Op	1
V Gem	274	Μ	Me	+19	2.81	Ôp	1
X Gem	264	Μ	Me	+37	1.86	Op,OH,SiO	5,15,32
ST Gem	246	M	Me	-57	2.02	Op	3
UU Gem	433	M M	M Ma	+19	3.03	SIU On	41
XX Gem	384	M	Me	+46	2.00	Up H2O	15
XY Gem	341	M	M	+125	3.49	Op,OH,H ₂ O	3,19,20,34
BC Gem	229	M	M	+125		Op	3
BR Gem	155	Μ		+35		Ôp	3

Table A2 – continued

Table A2 – continuea	Table	A2	- continued
-----------------------------	-------	----	-------------

Name	Р	Var	Sp	RV	Ē	Method	References
	(d)		1	(kms^{-1})	(mag)		
CE Gem	299	М		+68		Op	3
DO Gem	213	М	М	-11	1 =0	Op	3
R Gru	332	M	Me Me	-14 -21	1.78	Op	1
T Gru	136	M	Me	+13	5.24	Op	1
VW Gru	260	Μ	M8e	+22	5.19	Op	48
CD Gru	435		M8	-1	3.08	SiO	50
CK Gru	563	м	M9 Ma	$^{-6}$	1.78	Op,CO	48,72
K Her	318	M	Me	-33 -13	3.07	Op	1
T Her	165	M	Me	-124	3.22	Op,SiO	1,15,66
U Her	406	Μ	Me	-33	0.29	Op,OH,H ₂ O,SiO,CO	1,6,9,10,13,14,19,20,24,25,27,28,30,31,32,36,40,43,56,57,58
W Her	280	M	Me	-52	2.90	Op	1
RS Her	219	M	Me Me	-43 -70	2.92	Op OH	l 1 15
RU Her	484	M	Me	-29	0.36	Op.OH.SiO.CO	1.10.14.24.32.43.58
RV Her	205	M	Me	-43	0100	Op	1
RY Her	221	Μ	Me	-41	4.36	Op	1
RZ Her	329	M	Me	+33	5.00	Op	1
SS Her	107	M	Me Mo	-45 -10	5.08	Op	
SV Her	239	M	Me	-10 -24	2.00	Op	1
SY Her	116	M	Me	+33	4.33	Op	5
TV Her	304	Μ	Me	-70		Ôp	1
UV Her	342	M	Me	-5	1.78	Op,OH,H ₂ O,SiO	1,15,32
VW Her	284	M	Me Me	-1		Ор	3
WY Her	376	M	Me	-17	2.65	0H,H ₂ O	8.15.19
WZ Her	247	Μ		+2		Op	3
XZ Her	171	Μ	Μ	+33	7.02	Op	3
AE Her	249	M	Me	-52		Op	1
AQ Her	280	M	Me M8	-1 -51	2 52	ОННО	3 8 10 20 27
BG Her	347	M	Me	+12	2.52	H ₂ O	15
BK Her	215	M	1110	-56	2100	Op	3
BT Her	297	Μ		-19		Op	3
CG Her	180	M		-103		Op	3
CZ Her	322 165	SRd	K/M	$^{+10}$		Op	3
DF Her	337	M	Me	-54	2.52	Op	3
DG Her	293	Μ	Me	-80		Op	3
DO Her	216	M		-44		Op	3
DN Her	226	M M		-48 ± 14		Op	3
DS Her	263	M		-59		Op	3
DT Her	300	Μ		-10		Op	3
DU Her	270	Μ		-42		Op	3
ER Her	165	M		-37		Op	3
EW Her	228	M		-110 - 187		Op	3
FP Her	318	M	М	+40		Op	3
FR Her	134	Μ	М	-125		Op	3
FU Her	212	M		+8		Op	3
FX Her	354	M		+26		Op	3
HT Her	163	M		-294		Op	3
KR Her	135	Μ		-67		Op	3
KT Her	381	Μ		-42		Op	3
KX Her	495	M	Me	-15	2.51	Op	3
KZ Her	295 471	M	M	-30 + 41		Op	3
LU Her	217	M		-42		Op	3
MV Her	222	М		-24		OH, \dot{H}_2O	19,20
MW Her	449	M	Μ	-71	1.34	CO	44
NX Her	293	M		-19		Op	3
V393 Her	425	M		-17 +5		Ор H2O	8
V697 Her	475	-	Μ	+38		OH,H ₂ O	68,73
R Hor	407	Μ	Me	+50	0.93	Op,OH,SiO,CO	1,24,49,50,55,74
S Hor	335	Μ	Me	+26	3.37	Op	1

Table A2 – continued

Name	<i>P</i> (d)	Var	Sp	$\frac{RV}{(km s^{-1})}$	<i>K</i> (mag)	Method	References
T Hor	217	Μ	Me	+48	3.32	Op	1
U Hor	348	М	Me	-23	1.91	Op	1
RS Hor	202	M	Me M5a	+2 $+30$	4.46	Op	1
RI HOF	388	M	Me	+39 -11	4.05		48 1 10 12 14 24 30 32 53 56 57 58
S Hya	256	M	Me	+80	2.85	Op.SiQ	5.15
T Hya	298	М	Me	-5	2.36	Op	1
W Hya	361	SRa	Me	+39	3.16	Op,OH,H ₂ O,SiO,CO	1,6,8,9,10,13,14,18,24,25,30,31,32,36,40,56,58
X Hya	301	Μ	Me	+40	0.64	Op,OH,H ₂ O,SiO,CO	1,24,30,31,32,43,58
RR Hya	343	M	Me	+42	2.79	Op	1
RI Hya	290	M	Me	+ 39	1.57	$O_{\rm P}, H_2O$	1,15
WW Hva	310	M	IVIC	$+2^{0}$	1.57	Op	3
WX Hya	235	М	M3	+116	5.00	Op	46
IW Hya	650		Μ	+54		OH,H ₂ O,SiO	15,29,62,75
W Hyi	281	M	Me	+111	6.62	Op	48
RS Hyi	215	M	Me	+27	5.54	Op	1
K Ind S Ind	216 400	M	Me	+13 + 31	4.25	Op SiO	1
W Ind	198	SRc	Me	+62	1.41	Op	1
X Ind	225	М	Me	-6		Op	1
Y Ind	304	Μ	Me	-57		Op	1
RW Ind	150	M	Me	+149	5.79	Op	1
AP Ind	400	M?	M9 M0	-2	2.85	Op	48
AV Ind R Lac	304 220	м	M9 Me	-23 + 16	4.58	Op	48
S Lac	241	M	Me	-62	2.50	Op	1
SZ Lac	332	M	S	-66	2.00	Op	3
AQ Lac	362	Μ	Μ	-27		Op	3
AT Lac	171	Μ	M?	-195	7.19	Op	3
BC Lac	247	M	М	-34		Op	3
DL Lac	375	M M2		+12		Op	3
R Leo	310	M	Me	-38 +9	2 55	$O_{\rm TD}$ OH H ₂ O SiO CO	41 1 6 10 13 14 24 25 28 30 32 36 40 43 44 56 57 58
S Leo	190	M	Me	+103	5.79	On	1,0,10,13,14,24,23,20,30,32,30,40,43,44,30,37,30
V Leo	273	Μ	Me	-23	3.16	Op,H ₂ O	1,30
W Leo	391	Μ	Me	+50	2.02	Op,OH,H ₂ O,SiO	1,30,43,66
TZ Leo	331	M	M	+14	1.07	Op	3
AF Leo	107	SRb	M Ma	+7	1.37	OH, H_2O	1 10 14 10 20 24 21 22 40 42 44 40 56 58
S I Mi	233	M	Me		3.96	Op,OH,H_2O,SIO,CO	1,10,14,19,20,24,51,52,40,45,44,49,50,58
U LMi	272	SRa	Me	-25	2.87	Op	2
T Lep	368	М	Me	-10	0.09	Op,H ₂ O,SiO	1,30,32
X Lep	278	Μ	Me	+63		Op	3
R Lib	241	M	Me	+13	5.64	Op	1
S Lib	192	M	Me	+292	4.51	Op	1
I Lib	226	M	Me	-49 +93	3.74 4.57	Op	1
V Lib	255	M	Me	+15	4.70	Op	1
W Lib	205	Μ		+20		Op	3
X Lib	164	Μ	Me	-34	6.47	Op	1
Y Lib	275	M	Me	-1	3.29	Op,OH,H ₂ O	1,30,31,43,54
RK Lib	2//	M	Me Me	-34 +2	2.47	Op Op SiO CO	1 5 15 24 22
RT Lib	217	M	Me	+41	4 31	Op,SIO,CO	3,13,24,52 1
RU Lib	316	M	Me	-42	2.29	Op	5
SW Lib	291	М	Μ	-32	2.66	H ₂ O	30
UU Lib	287	Μ	Me	-38		Op	3
EE Lib	208	M	Me	-112		Op	3
EG Lib FS Lib	365 115	M	M M	+5	2.19	OH,H ₂ O	12,15 20 30 31 43
RLup	235	M	Me	-18 +8	2.00	On,n ₂ O	27,50,51,45 1
S Lup	339	M	Se	-45	2.89	Op	1
Y Lup	396	М	Me	-65	1.24	Op	1
RR Lup	183	Μ	Me	-29	2.26	Ōp	1
RX Lup	237	Μ	Me	+13	3.08	Op	1
K Lyn	378	M	Se	+20	1.51	Op Op U O S'O	1
o Lyn U Lyn	296 433	M	Me	-2/ -12	5.02 1.41	Op,H_2O,SiO	1,10,09 1 30 31 32 <i>1</i> 3
X Lyn	320	M	Me	+4	1.41	Op,011,1120,510 Op	3

(d) (km s ⁻¹) (mag)	
V Lyr 373 M Me -29 2.37 Op,OH 1,4	43
W Lyr 197 M Me -174 3.13 Op 55 7 Lyr 201 M Me $+3$ Op 1	,
RS Lyr 301 M Me -21 Op 1	
RT Lyr 253 M Me -94 Op 1	
RU Lyr 371 M Me -4 Op,H ₂ O 1,3 DW Lyr 502 M Me $40 - 256$ OU H 0.850 20.2021	30
RW Lyr 503 M Me -40 2.50 OH, H ₂ O, S1O 29, 30, 31, RX Lyr 247 M Me -148 On 2 3 3	43,54,76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ST Lyr 300 M Me -75 Op 40	6
SV Lyr = 301 M M -5 Op 3	\$ C
TX Lyr 202 M Me -68 Op 3	}
TY Lyr 333 M Me -29 Op 3	5
WZ Lyr 376 M M9e +5 Op 44	6
YY Lyr 136 M -54 Op 33	
AD Lyr 190 M -24 Op 3	}
AS Lyr 327 M -36 Op 3	5
BB Lyr 322 M -42 Op 33	
BI Lyr 249 M $+67$ Op 33 BI Lyr 279 M -10 Op 33	
$\frac{10}{10}$ 10	}
BR Lyr 215 M -141 Op 3	;
CK Lyr 343 M +37 Op 33	
DL Lyr 411 M -4 Op 3 FR Lyr 196 M Me $+39$ 520 Op 3	
FF Lyr 220 M -103 Op 3	, }
FP Lyr 278 M –21 Op 3	;
HI Lyr 182 M Me -40 Op 3	
IS Lyr 281 M -28 Op 5 IT Lyr 198 M M $2 + 52$ 7.04 Op 23	
KZ Lyr 149 M -16 Op 3	}
LM Lyr 326 M -52 Op 3	}
MP Lyr 153 M M? -235 7.90 Op 3 U Map 407 SP Ma +20 0.12 Op H O SiO CO 2475	50.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
SY Men 534 M M9 -3 3.13 Op,SiO 48,	50
R Mic 138 M Me +7 3.66 Op 1	
$S M_{1C}$ 209 M Me +54 4.76 Op 5 T Mic 347 SRb Me +16 158 Op H.O CO 2127) 19 50
U Mic 34 M Me -60 1.84 Op,OH,SiO 1.29	9,50
V Mic 381 M Me -1 2.10 OH 29	9
W Mic 198 M Me -47 5.99 Op 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
BP Mic 361 M8 -33 3.53 Op 44	8
BQ Mic 559 M9 -28 2.22 CO 49	9 22.56
X Mon = 155 SRb Me + 159 2.87 Op = 1	52,50
Y Mon 227 M Me +65 3.77 Op 55	5
RR Mon 394 M Se +23 2.36 Op 1	
RS Mon 263 M Me -9 Op 33 SV Mon 422 M Me -40 151 OH H-O SiO 843	61
TT Mon 323 M Me $+59$ 2.03 Op.H ₂ O 3.5	30
AG Mon 155 M M? +55 6.05 Op 3	;
AH Mon 374 M M +131 Op 33	
AL Mon 243 M M $+90$ Op 33 AM Mon 432 M M $+15$ 290 On 33	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	}
BD Mon 373 M Se +54 Op 3	}
BL Mon 144 M +47 Op 3 CM Mon 150 M +25 Or	
CN Mon 373 M M + 61 4.83 Op 37	
FX Mon 428 M M $+48$ 2.58 OH,H_2O 12,10	6,43
GX Mon 527 M M +8 1.07 Op,OH,H ₂ O,SiO,CO 3,10,19,20,29	9,34,43,44,58
HN Mon 410 M M $+95$ 3.40 SiO 15, OO Mon 222 M M $+80$ Or 27	41
R Nor 507 M Me -28 1.27 Op 1	

			~		~		
Name	P	Var	Sp	RV (km s ⁻¹)	K (mag)	Method	References
	(u)			(kiii s)	(mag)		
T Nor	240	M	Me	-33	2.16	Op	1
R Oct	405	M	Me Me	+36	0.75	Op,SiO	1,50
T Oct	239	M	Me	-33 + 80		Op	1
U Oct	308	M	Me	+30	2.25	On	1
X Oct	206	SRa	Me	-2	1.73	Op	2
RR Oct	273	Μ	M5	-41	4.04	Op	48
TW Oct	132	SR	Me	+114	3.44	Op	2
UX Oct	303	M?	M8e	+3	4.46	Op	48
CM Oct	4/3	м	M6 Mo	-5	4.8/	Op,OH Op SiO	48
S Oph	233	M	Me	-49	3.77	Op,SIO	15,28,52,50
T Oph	366	M	Me	-46	1.54	Op.OH.SiO	1.15.32.56
W Oph	332	М	Me	-46	2.65	Op	1
X Oph	328	Μ	Me	-75	0.98	Op,OH,H ₂ O,SiO,CO	5,24,30,32,43,61
Z Oph	348	Μ	KMe	-83	4.01	Op	1
RR Oph	292	M	Me	+57	2.62	Op	1
RT Oph	426	M	Me	-39	1.84	Op,OH,H ₂ O,SiO	1,30,43,61
RU Oph	202	M	M	-67	4.57	ОННО	10 20 30 31 34 43
RY Oph	150	M	Me	-62	2.00	On, H_2O On SiO	19,20,30,31,34,43
SS Oph	180	M	Me	-34	2.63	Op	5
UY Oph	332	М	М	-82	2.80	OH,H ₂ O	15
VW Oph	285	Μ	Me	-93	4.79	Op	3
XY Oph	362	Μ		-86		OH,H ₂ O	19,20,27
AH Oph	353	M	M	+36	2.47	H ₂ O	30
BC Oph	307	M	Me	+25	2.45	Op	3,46
DO Oph	254	M		-143		Op	3
KT Oph	215	M		-21		Op	3
KU Oph	382	Μ	Me	+38	4.00	Op	3
V379 Oph	221	Μ		+32		Op	3
V389 Oph	315	Μ		+8		Op	3
V438 Oph	169	SRa	Me	-10	0.65	H ₂ O	30
V457 Oph	190	M		+144		Op	3
V584 Oph	276	M		-0 + 32		Op	3
V588 Oph	191	M		-21		On	3
V603 Oph	345	Μ		+90		OH,H ₂ O	19,20
V640 Oph	226	Μ		+36		OH,H ₂ O	19,20,34
V653 Oph	276	Μ		-2		Op	3
V665 Oph	503	M		+53		OH,H ₂ O	17,19,20,34
V/90 Oph	370	M	Me	-76	244	OH,H_2O	8,16
V884 Oph	210	M	IVI	-6 +14	2.00	On, n_2O	8,15 3
V885 Oph	350	M	Me	+133		Op	3
V915 Oph	111	Μ	Me	-31		Op	3
V970 Oph	275	Μ		+32		OH, \dot{H}_2O	19,20
S Ori	414	М	Me	+24	0.07	Op,OH,SiO,CO	1,24,32,43,58
U Ori	368	M	Me	-25	0.75	Op,OH,H ₂ O,SiO,CO	1,6,8,10,13,24,28,29,30,31,32,43,58
V Ori V Ori	263	M	Me	+21	3.99	Op	1
RR Ori	251	M	Me	-33	3.04	Op	3
BK Ori	354	M	Me	+13	2.05	Op,SiO	3.61
CL Ori	215	Μ	Me	-12		Op	3
EK Ori	148	Μ		-9		Op	3
EU Ori	327	М	М	+69		Op	3
GV Ori	313	M	м	+44		Op	3
V 382 Uri R Pay	225	M	Me Me	$^{+10}_{+36}$	2 80	Op	5
S Pav	380	SRa	Me	-21	1.38	Op.SiO	1.50
T Pav	243	М	Me	+66	2.87	Op	1
W Pav	283	Μ	Me	+63		Ôp	1
SU Pav	245	Μ	Me	+16		Op	1
SY Pav	193	Μ	Me	+101	6.35	Op	1
DM Pav	287	M	M8	-4	5.97	Op	48
V 350 Pav	419 186	M	M9 M9	+2	2.50		49,72
R Peg	378	м	Me	+17	0.51	Op.OH.H ₂ O SiO CO	1.24 30 32 43 58
S Peg	319	M	Me	+2	1.41	Op,SiO	5,32

Name	<i>P</i> (d)	Var	Sp	RV $(km s^{-1})$	<i>K</i> (mag)	Method	References
T Peg	379	М	Me	-14	1.89	Op	1
V Peg	302	M	Me	-30	3.25	Op,SiO	1,15
W Peg X Peg	345 201	M M	Me Me	-24 -59	0.02	Op,OH,H ₂ O,SiO,CO	5,15,24,30,32,56,58
Y Peg	201	M	Me	-88	5.69	Op	1
Z Peg	334	Μ	Me	-35	1.09	Op,SiO	1,32
RR Peg	264	M	Me	-30	1.00	Op	1
RS Peg	415	M M	Me Me	-31 -118	1.20	Op,OH,SiO	1,43,61
RV Peg	396	M	Me	-35	2.17	Op.OH.SiO	1.43.56
RW Peg	208	Μ	KMe	-79	4.78	Op	1
SS Peg	424	M	Me	-22	1.11	Op,SiO	1,61
TU Peg	321	M M	Me Me	-2 -15	1.10	OH,H ₂ O,SiO	15,32,61,67
UU Peg	456	M	Me	+15 + 15	1.32	OH,H ₂ O,CO	30.43,44
VY Peg	377	Μ	M7	+24	4.20	Öp	3
AK Peg	193	SRa	Me	-6	2.96	Op	2
AP Peg	300	M	Me Mo	+38 -120		Op	3
DL Peg	140	M	M	-35	6.72	Op	3
KZ Peg	452		M9	-7	1.58	Op,OH	29,48
LV Peg	166		M8	-59	5.19	Op	48
MP Peg	316		M5 M0	-115	5.24	Op,OH Op OH	48,51
MK Feg MV Peg	282		M8e	-94	5.15	Op,On Op	48
R Per	209	М	Me	-82	0110	Op	1
U Per	320	Μ	Me	+14	0.92	Op	1
RR Per	389	M	Me	+3	1.50	Op,OH,SiO	1,32,43,53
RU Per RZ Per	355	SK? M	Me Se	$-40 \\ -17$	1.94	Op	2
AL Per	145	M	50	-226		Op	3
AM Per	250	Μ	М	-6	2.94	Op	3
FG Per	340	Μ		-33		Op	3
FI Per GG Per	427	M M	М	-58 -57		SiO Op	41
R Phe	269	M	Me	+10	3.21	Op	1
S Phe	141	SR	Me	+3	1.58	Op	1
W Phe	334	М	Me	+53	2.66	Op	1
RU Phe	286	М	Mle	+17	4.00	Op H O	48
R Pic	170	SRa	Me	+207	3.45	Op	12
S Pic	428	М	Me	+19	0.72	Op,OH,SiO,CO	1,24,49,50
T Pic	200	Μ	Me	+43	4.26	Op	1
UX Pic	386	м	M8 Ma	+24	3.06	Op,OH	45,48
S Psc	404	M	Me	+10	2.11	Op,OH,SIO	5,10,52
U Psc	173	M	Me	-36	6.58	Op	3
X Psc	349	Μ	Me	+6	2.69	Op	1
RR Psc	270	М	M?	-128	6.04	Op OULLOSIO CO	3
AW Psc	545		M9	-26	2.49	CO	49
R PsA	297	М	Me	-28	3.60	Op	1
S PsA	271	Μ	Me	-95	3.65	Op	1
RX PsA	366	SRa	Me	-38	5.18	Op	2
SY PSA U Pun	335	M	M8e Me	-42 -2	4.02	Op Op OH	48 1 29 43 53
W Pup	119	M	Me	$+16^{2}$	3.55	Op,011 Op	1
Z Pup	508	Μ	Me	+20	1.33	Op,OH,H ₂ O,SiO	1,30,31,32,43,58
RV Pup	188	М	Me	+91	3.63	Op	1
RW Pup	340 301	M	Me	+59 +101	2.99	Ор	1 29.43
SV Pup	166	M	Me	+101 +46	3.59	H ₂ O	8
TZ Pup	317	Μ	M	+70		Op	3
UU Pup	282	Μ	Μ	+79	4.50	Op	3
UW Pup	422	M	M9	+101	0.27	Op	3
AS Pup CH Pup	524 505	M M	Me	-24 + 30	0.27	OH SiO	1 15
FO Pup	318	M	Me	+87	1.01	Op	3
L ₂ Pup	140	SRb	Me	+53	2.24	Op,OH,H ₂ O,SiO,CO	1,47,50,55,60,70,71,80
S Pyx	206	Μ	Me	+97	4.04	Op	1

Ans. (a) (b) (b) (b) (b) (b) (b) (b) R No. 278 M M +20 1.74 Op 1 R No. 278 M M +22 Op 3 KT Sg. 299 M +21 Op 3 KX Sg. 44 M -119 Op 3 KX Sg. 44 M -119 Op 3 KX Sg. 440 M -45 Op 3 KX Sg. 400 -45 Op 3 -11 S Sg. 200 M M -43 130 Op 1 S Sg. 240 M M -43 130 Op 1 -1 S Sg. 240 M M -72 130 Op 1 -1 S Sg. 240 M M -72 30 Op 1 -1 </th <th>Name</th> <th>Р</th> <th>Var</th> <th>Sn</th> <th>RV</th> <th>Ē</th> <th>Method</th> <th>References</th>	Name	Р	Var	Sn	RV	Ē	Method	References
Ref 278 M Me + 40 1.74 Op 1 Y Sgc 166 M M + 21 Op 3 RY Sg 166 M M + 21 Op 3 RW Sg 168 M M - 19 Op 3 RW Sg 128 M M - 19 Op 3 RW Sg 128 M 0 0,0,0,H,HO 3,16,10,20,34 RW Sg 128 M 0 3,55 Op 3 R Sgr 269 M Mc -43 0,0 1 R Sgr 30 Mc -42 1,0 0,0 1 T Sgr 344 M Se -2 1,23 Op 1 R Sgr 30 M Me +33 1,48 Op 1 R Sgr 30 M Me +23 1,33 Op 1	Ivanie	(d)	vai	SP	(kms^{-1})	(mag)	Method	icerciees
W Sge 213 M Me -67 2.93 Op 1 RT Sge 209 M -121 Op 3 NX Sge 44 M -129 Op 3 NX Sge 44 M -129 Op 3 NX Sge 44 M -03 35 NS Sge 120 M -03 35 SG 000 3 3 SS Sg 230 M +432 -00 3 SS Sg 230 M M -43 2.06 Op 1 SS Sg 230 M M -72 1.29 Op 5 1 Sgr 400 M Me -82 1.80 Op 1.3043.61 R1 Sgr 30 M Me -72 3.05 Op 1 R1 Sgr 35 M Me -75 Op 1 <td< td=""><td>R Ret</td><td>278</td><td>М</td><td>Me</td><td>+20</td><td>1.74</td><td>Ор</td><td>1</td></td<>	R Ret	278	М	Me	+20	1.74	Ор	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W Sge	278	Μ	Me	-67	2.93	Op	1
	Y Sge	146	M	М	+2		Op	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RW Sge	299 444	M	М	-119		Op	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RX Sge	439	M	M	+8		Op,OH,H ₂ O	3,16,19,20,34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TX Sge	156	Μ		0		Op	3
	BM Sge	312	M		0	3.55	Op	3
$ \begin{split} \begin{array}{lllllllllllllllllllllllllllllllllll$	CS Sge R Sor	351 269	M	Me	+32 -45	2.06	Op	3
$ \begin{split} $T_{SP} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	S Ser	230	M	M	+33	4.68	Op	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T Sgr	394	М	Se	-2	1.29	Op	5
RR Sgr 336 M Me + #33 0.69 0p.OH.H_O.SIO 1.34.361 RU Sgr 240 M Me - 68 2.13 Op 1 RU Sgr 215 M Me - 68 2.18 Op 1 RW Sgr 155 M Me + 22 3.06 Op 1 RW Sgr 315 M Me - 22 8.06 Op 1 ST Sgr 395 M Me - 40 1.28 Op 1 U1 Sgr 266 M Me + 41 1.75 OH.H.HO.SIO 2.30.43 AL Sgr 78 M Me + 479 Op 3 3 V3 Sgr 401 M Me + 479 Op 3 3 FQ Sgr 405 M M + 46 1.68 OH.H.JO.SIO 15.77 V2324 Sgr 405 M M + 46 1.37 Op.CO 48.49 V2324 Sgr 405 M M - 60	Z Sgr	450	Μ	Me	-26	1.95	Op	1
	RR Sgr	336	M	Me	+83	0.69	Op,OH,H ₂ O,SiO	1,30,43,61
	RT Sgr PU Sgr	306	M M	Me Me	+32 -68	1.33	Op	1
$ \begin{split} & Rv \ Sgr & 186 & SRa & Me & -52 & 3.06 & Op & 1 \\ & St \ Sgr & 305 & M & Me & -52 & 2.88 & Op & 1 \\ & ST \ Sgr & 305 & M & Se & +40 & 1.38 & Op \ SiO & 1.14 \\ & UU \ Sgr & 267 & M & Me & +11 & 1.50 & Op & 1 \\ & UU \ Sgr & 267 & M & Me & +11 & 1.50 & Op & 1 \\ & UV \ Sgr & 101 & M & Me & +14 & 1.75 & Oh \ H_2O & 2.30.43 \\ & Al \ Sgr & 78 & M & M? & -7 & 5.85 & Op & 3 \\ & BM \ Sgr & 402 & M & Me & +79 & Op & 1 \\ & BU \ Sgr & 313 & M & Me & +70 & Op & 3 \\ & BV \ Sgr & 313 & M & Me & +70 & Op & 3 \\ & FV \ Sgr & 313 & M & Me & +70 & Op & 1 \\ & St \ Sgr & 313 & M & Me & +70 & Op & 3 \\ & V239 \ Sgr & 313 & M & Me & +30 & 1.34 & SiO \ CO & 15.49 \\ & V239 \ Sgr & 448 & M2 & Me & -6 & 1.57 & Oh \ H_2OSiO & 15.49 \\ & V234 \ Sgr & 372 & M & M & +30 & 1.34 & SiO \ CO & 2.880.33 \\ & Sco & 224 & M & Me & -3 & 5.15 & Op & 1 \\ & W \ Sco & 221 & M & +21 & Op & 3 \\ & Sco & 221 & M & +21 & Op & 3. \\ & Sco & 221 & M & +21 & Op & 3. \\ & Sco & 221 & M & +21 & Op & 3.46 \\ & Z \ Sco & 343 & M & Me & -57 & 1.48 & Op & 1 \\ & W \ Sco & 319 & M & Me & -57 & 1.48 & Op & 1 \\ & W \ Sco & 319 & M & Me & -77 & 1.48 & Op & 1 \\ & R \ Sco & 319 & M & Me & -77 & 1.48 & Op & 1 \\ & R \ Sco & 319 & M & Me & -78 & 0.40 & OpCO & 1.1524.32 \\ & R \ Sco & 319 & M & Me & -71 & 3.0 & Op.SiO.CO & 1.1524.32 \\ & R \ Sco & 319 & M & Me & -71 & 4.19 & Op.H_4O.SiO & 1.232.24.35.565 \\ & R \ Sco & 316 & M & Me & -715 & 4.19 & Op.H_4O & 1.43 \\ & W \ Sco & 328 & M & Me & -78 & 3.30 & Op.SiO.CO & 1.15.24.32 \\ & W \ Sco & 33 & M & Me & -73 & 0.31 & Op.SiO & 1.23.24.35.565 \\ & R \ Sco & 156 & M & Me & -175 & 4.19 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -18 & 0.03 & Op.SiO & 1.24.28.30.32.7.58 \\ & S \ Sco & 156 & M & Me & -175 & 4.19 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -16 & 2.76 & Op.OH & 1.43 \\ & W \ Sco & 431 & M & Me & -16 & 0.76 & Op & 3 \\ & S \ Sco & 257 & M & Me & -43 & 3.07 & Op.OH & $	RV Sgr	315	M	Me	+20	1.63	Op	1
RX Ser 335 M Me -28 2.88 Op 1 TV Ser 266 M Me +127 Op 1 UT Ser 267 M Me +11 1.50 Op 23.04.3 LV Ser 401 M Me +141 1.75 OP 3 BM Ser 402 M Me +20 Op 3 BU Ser 313 M Me +20 Op 3 FQ Ser 434 M7 Me -6 1.57 OHHQ.SiO 15.77 V2425 Sgr 445 M M +46 1.68 OHZGO 48.49 V2395 Sgr 405 M M +46 1.68 OHZGO 48.49 V2395 Sgr 405 M Me -5.15 Op 1 3 V2305 Sgr 107 M Me -5.44 Op 1.5 3.46 V Sco 21 M Me -7.5 5.44 Op 1 1.5	RW Sgr	186	SRa	Me	-52	3.06	Op	1
ST Sgr 395 M Se +40 1.38 Op,SiO 1,14 UV Sgr 307 M Me +27 Op 1 UU Sgr 267 M Me +111 1.50 Op 1 UV Sgr 401 M Me +44 1.75 OH.H_O 29,30,43 AL Sgr 78 M M? -7 5.85 Op 3 BM Sgr 402 M Me +79 Op 3 BV Sgr 313 M Me +70 Op 3 PQ Sgr 434 M? Me -6 1.57 OH.H_O.SIO 15,77 V42 Sgr 313 M M +40 1.54 SUC,CO 15,479 V239 Sgr 444 M? M M +30 1.34 SUC,CO 15,49 V239 Sgr 445 SK2 M9e -43 1.37 Op,CO 48,49 V234 Sgr 300 M +46 1.68 OH.SIO 28,80,33 K Sco 224 M Me -3 5.15 Op 1 Sco 224 M M e -50 5.84 Op 3 Sco 221 M +21 Op 3 Sco 221 M +21 Op 3 Sco 221 M +21 Op 3 Sco 333 M Me -50 5.84 Op 1 K Sco 334 M Me -79 1.38 Op,SIO,CO 1,15,432 K Sco 334 M Me -70 1.34 Op,SIO,CO 1,24,42 Sco 343 M Me -50 1.48 Op 1 K Sco 378 M M e -70 1.30 Op,SIO,CO 1,15,24,32 K Sco 19 M M e -71 1.48 Op 1 K Sco 378 M M e -71 1.48 Op 1 K Sco 378 M M e -72 1.30 Op,SIO,CO 1,15,24,32 K Sco 19 M M e -72 0.00 K Sco 175 M M Me -72 0.00 K Sco 176 M M e -74 0.00 K Sco 176 M M e -74 0.00 K Sco 176 M M e -74 0.00 K Sco 176 M M e -73 5.15 Op 1 K Sco 373 M M e -70 1.30 Op,SIO,CO 1,15,24,32 K Sco 373 M M e -71 1.48 Op 1 K Sco 373 M M e -71 1.49 Op,H ₀ 1 K Sco 373 M M e -72 0.00 M Me -74 00 M Me -75 0.00 M ME	RX Sgr	335	Μ	Me	-28	2.88	Op	1
	ST Sgr	395	M	Se	+40	1.38	Op,SiO	1,14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TV Sgr	266	M M	Me Me	+27	1.50	Op	1
AL 5gr 78 M M2 -7 5.85 Op 3 BM Sgr 402 M Me $+70$ Op 3 FQ sgr 434 M7 Me -6 1.57 OHL4C0SiO 15.77 V342 Sgr 372 M M $+40$ 1.68 OLLSiO 15.49 V2359 Sgr 405 M M $+46$ 1.68 OLLSiO 29.80.83 V2359 Sgr 405 M M $+46$ 2.31 OHL40.500 29.80.83 V380 Sgr 510 M $+6$ 2.31 OHL40.500 29.80.83 Soc 21 M -75 5.84 Op 1 3 Soc 19 M Me -50 5.84 Op 1 1.85 Soc 19 M Me -50 0.54 Op 1 1.24 R Soc 281 M Me -79 0.23 Op.CO 1.24 1.24 R Soc 280 M	VV Sgr	401	M	Me	+44	1.75	OH H2O	29.30.43
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	AL Sgr	78	M	M?	-7	5.85	Op	3
BU Ser 313 M M Me +20 Op 3 FO Ser 434 M2 Me -6 1.57 OH, H ₂ OSiO 15,77 V342 Ser 372 M M +30 1.34 SiO, CO 15,49 V2059 Ser 464 SR2 M9e -43 1.37 Op, CO 48,49 V2380 Ser 10 M +6 2.31 OH, H ₂ OSiO 29,80,83 R Soo 224 M Me -3 5.15 Op 1 W Sco 221 M +21 Op 3 S Soo 177 M M e +84 5.08 Op 1 W Sco 221 M +21 Op 3 X Sco 199 M Me -50 5.84 Op 1 R S Sco 199 M Me -50 5.84 Op 1 R S Sco 199 M Me -50 5.84 Op 1 R S Sco 199 M Me -50 0.23 Op, SiO, CO 1,15,24,32 K S Sco 199 M Me -50 0.23 Op, SiO, CO 1,15,24,32 K S Sco 199 M Me -79 0.23 Op, SiO, CO 1,24 R S Sco 319 M Me -58 0.41 Op 1 R S Sco 319 M Me -79 1.30 Op, CO 1,24 R S Sco 319 M Me -79 1.30 Op, CO 1,24 R S Sco 319 M Me -79 0.23 Op, SiO, CO 1,24 R S Sco 319 M Me -74 Op 1 R W Sco 260 M Me -74 Op 1 R W Sco 260 M Me -74 Op 1 K S Sco 373 M M e -16 2.75 Op, OH 1 K S Sco 373 M M e -16 2.75 Op, OH 1 K S Sco 373 M M e -16 2.75 Op, OH 1,43 TU Sco 373 M M e -130 Op 4 K S Sco 419 M Me +14 2.09 Op 3 S Sco 429 M M e -130 Op 3 S Sco 429 M M e -130 Op 3 S Sco 431 M M e +14 2.09 Op 4 K S Sco 313 M M Me -16 2.75 Op, OH 1,43 TU Sco 373 M M Me -16 2.75 Op, OH 1,43 S Scl 335 M M8 -48 3.80 Op 4 K S Sco 429 M M e +24 0,31 Op, SiO 1,15,32,50 U Scl 335 M M8 -48 3.80 Op 4 S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 3.13 Op 3 S Scl 416 S R e +32 3.72 Op 1 S Scl 335 M M8 -48 3.80 Op 3 S S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 0.10 Op 3 S S Scl 416 S R e +32 3.72 Op 1 S Scl 335 M M8 -48 3.80 Op 3 S S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 3.13 Op 3 S S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 3.13 Op 3 S S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 3.13 Op 3 S S Scl 416 S R e +32 3.72 Op 1 U Scl 226 M M e +44 3.13 Op 3 S S Scl 416 S R e +34 0 S S S	BM Sgr	402	Μ	Me	+79		Op	1
PU Ser 434 M7 Me -6 1.57 OHLHQUSIO 15.77 V2425 Sgr 405 M M +46 1.68 OHLSIO 15 V2059 Sgr 405 M M +46 1.68 OHLSIO 29,80,83 V2850 Sgr 510 M +6 2.31 OHLH2O,SIO 29,80,83 V380 Sgr 510 M +6 2.31 OHLH2O,SIO 29,80,83 Soc 177 M Me -50 5.84 Op 1 Sco 199 M Me -50 5.84 Op 3,46 Z Sco 343 M Me -59 0.23 Op,SiO,CO 1,15,24,32 R Sco 281 M Me -79 0.23 Op,SiO,CO 1,24 R Sco 319 M Me -79 0,0 Op,OH,H2O,SIO 1,29,24,35,565 R Sco 324 M Me -10 <td< td=""><td>BU Sgr</td><td>313</td><td>M</td><td>Me</td><td>+20</td><td>1.57</td><td>Op</td><td>3</td></td<>	BU Sgr	313	M	Me	+20	1.57	Op	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FQ Sgr V342 Sor	434	M? M	Me M	-6 + 30	1.57	0H,H ₂ 0,S10	15,77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V 342 Sgi V2059 Sør	405	M	M	+30 +46	1.54	OH SiO	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2234 Sgr	464	SR?	M9e	-43	1.37	Op,CO	48,49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V3880 Sgr	510		Μ	+6	2.31	OH,H ₂ O,SiO	29,80,83
$ \begin{split} & Soco & 17/ & M & Me & +84 & 3.08 & Op & 1 \\ & M & +21 & Op & 3. \\ & X sco & 199 & M & Me & -50 & 5.84 & Op & 1. \\ & R Sco & 281 & M & Me & -50 & 0.23 & Op.SiO.CO & 1,15.24.32 \\ & R Sco & 281 & M & Me & -39 & 0.23 & Op.SiO.CO & 1,15.24.32 \\ & R Sco & 319 & M & Me & +2 & 0.40 & Op.CO & 1.24 \\ & R T Sco & 449 & M & Me & -58 & 0.41 & Op & 1 \\ & R U Sco & 370 & M & Me & +29 & 0.96 & Op & 1 \\ & R U Sco & 370 & M & Me & -79 & 1.30 & Op.OH.H_0.SiO & 1,29.32.45.55.5 \\ & R Z Sco & 156 & M & Me & -175 & 4.19 & Op.H_2O & 1.67 \\ & SW Sco & 260 & M & Me & -74 & Op & 1 \\ & SV Sco & 234 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & TU Sco & 373 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & TU Sco & 373 & M & Me & -16 & 2.75 & Op.OH & 1.43 \\ & W Sco & 429 & M & Me & -130 & Op & 1 \\ & SS Sci & 326 & M & Me & +23 & 0.31 & Op.SiO & 1.15.32.50 \\ & U Scl & 335 & M & M8 & -8 & 3.80 & Op & 48 \\ & V Scl & 296 & M & Me & +43 & 0.31 & Op.SiO & 1.15.32.50 \\ & U Scl & 335 & M & M8 & -8 & 3.80 & Op & 48 \\ & V Scl & 296 & M & Me & +44 & 3.13 & Op & 3 \\ & SV Scl & 415 & M & Mee & +24 & 2.61 & Op.OH.H_2O & 15.31.48 \\ & V Sct & 252 & M & Me & +46 & Op & 3 \\ & ST Sct & 219 & M & Me & +46 & Op & 3 \\ & S Scl & 335 & M & Me & +46 & Op & 3 \\ & S Scl & 335 & M & Me & +46 & Op & 3 \\ & S Scl & 356 & M & Me & +46 & Op & 3 \\ & S Scl & 356 & M & Me & +46 & Op & 3 \\ & S Scl & 356 & M & Me & +46 & Op & 3 \\ & S Scl & 356 & M & Me & +46 & Op & 3 \\ & S Sr & 371 & M & Me & +48 & 0p & 3 \\ & S F sct & 219 & M & Me & +46 & Op & 3 \\ & S F sct & 371 & M & Me & +48 & Op & 3 \\ & S F sct & 371 & M & Me & +48 & Op & 3 \\ & S F sct & 371 & M & Me & +48 & Op & 3 \\ & S F sct & 338 & M & Me & 0 & 2.53 & Op & 1 \\ & U S er & 237 & M & Me & -16 & 0.39 & H_2O,SiO & 1.28.30.31.32.43.58 \\ & T S er & 338 & M & Me & 0.2 & 2.53 & Op & 1 \\ & U S er & 237 & M & Me & +54 & Op & 3 \\ & S C S cr & 245 & M & Me & +61 & 1.76 & Op.H_10 & 0 \\ & S F S S S & S S S & 258 & M & Me & +77 & Op & 3 \\ & S S S S & 258 & M & Me & +78 & 0.00 & 0.33.00 \\ & W X S er & 425 & M & Me & +78 & 0.00 & 0.33.00 \\ & W$	R Sco	224	М	Me	-3	5.15	Op	1
	S Sco	177	M	Me	+84 + 21	5.08	Op	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X Sco	199	M	Me	$^{+21}$	5.84	Op	3 46
RR Sco 281 M Me -39 0,23 Op,SiO,CO 1,15,24,32 RS Sco 319 M Me $+22$ 0,40 Op,CO 1,24 RT Sco 449 M Me -58 0,41 Op 1 RU Sco 370 M Me $+29$ 0,96 Op 1,29,32,43,55,65 RZ Sco 156 M Me -774 Op 1,67 SW Sco 260 M Me -717 Op,OH 1,43 TU Sco 373 M Me -10 Op,OH 1,43 WW Sco 431 M Me -20 Op,OH 1 KS Sco 429 M Me -130 Op 1 KS Sco 429 M Me $+132$ 0.31 Op,OH 1 KS Sco 429 M Me $+132$ 0.510 1,15,32,50 1 V Scl 326 M Me $+44$ 3.13 Op 3 3 <td>Z Sco</td> <td>343</td> <td>M</td> <td>Me</td> <td>-57</td> <td>1.48</td> <td>Op</td> <td>1</td>	Z Sco	343	M	Me	-57	1.48	Op	1
RS 5co 319 M Me $+22$ 0.40 Op,CO 1.24 RT 5co 449 M Me -58 0.41 Op 1 RU Sco 389 M Me -79 1.30 Op,OH,H_2O,SiO 1.29.32,43.55,65 RZ Sco 156 M Me -74 Op 1 SW Sco 260 M Me -74 Op 1 SV Sco 234 M Me -74 Op 1 SV Sco 234 M Me -710 Op,OH 1,43 WW Sco 313 M Me -110 Op 1 SV Sco 431 M Me $+111$ 2.09 Op 1 SV Sci 429 M Me $+23$ 0.31 Op,SiO 1,15,32,50 U Sci 335 M M8 -8 3.80 Op 3 SV Scl 146 SR Me $+32$ 3.72 Op 3 SV Scl </td <td>RR Sco</td> <td>281</td> <td>Μ</td> <td>Me</td> <td>-39</td> <td>0.23</td> <td>Op,SiO,CO</td> <td>1,15,24,32</td>	RR Sco	281	Μ	Me	-39	0.23	Op,SiO,CO	1,15,24,32
K1 Sco 449 M Me -38 0.41 Op 1 RU Sco 370 M Me $+29$ 0.96 Op 1 RW Sco 389 M Me -79 1.30 Op,OH,H ₂ O,SiO $1.29,32,43,55,65$ RZ Sco 156 M Me -74 Op 1 SY Sco 234 M Me -74 Op 1 SY Sco 234 M Me -10 Op,OH 1.43 WW Sco 431 M Me -110 Op 1 SS Sci 362 M Me $+11$ 2.09 Op 1 S Scl 362 M Me $+23$ 0.31 Op,SiO $1.15,32,50$ U Scl 335 M Me $+8$ 3.80 Op 48 V Scl 296 M Me $+32$ 3.72 Op 1 SY Scl 416 SR Me $+32$ $0.72,00$ $15,31.48$ <td< td=""><td>RS Sco</td><td>319</td><td>M</td><td>Me</td><td>+2</td><td>0.40</td><td>Op,CO</td><td>1,24</td></td<>	RS Sco	319	M	Me	+2	0.40	Op,CO	1,24
RobitSoloSoloOpp1,29,32,43,55,65RV Sco156MMe -175 4.19Op,OH,H ₂ O,SiO1,29,32,43,55,65RZ Sco156MMe -174 Op1SW Sco234MMe -20 Op,OH1,43TU Sco373MMe -16 2.75Op,OH1,43WW Sco431MMe $+11$ 2.09Op1KS Sco429MMe -130 Op1S Scl362MMe $+23$ 0.31Op,SiO1,15,32,50U Scl335MM8 -8 3.80Op48V Scl296MMe $+44$ 3.13Op3SW Scl146SRMe $+32$ 3.72Op1S St St219MMe $+44$ 2.61Op,OH,H ₂ O15,31,48V Sct252MMe $+30$ Op3S St St219MMe $+46$ Op3S Set356MMe $+15$ 0.82Op,OH,H ₂ O,SiO1,24,28,30,32,57,58S Ser371MMe $+8$ Op3U Ser237MMe -22 3.53Op1U Ser237MMe -32 3.30MV Ser269MMe -14 3.22 OH,H ₂ O3,30U Ser238M <td< td=""><td>RI Sco</td><td>449 370</td><td>M</td><td>Me</td><td>-58 + 29</td><td>0.41</td><td>Op</td><td>1</td></td<>	RI Sco	449 370	M	Me	-58 + 29	0.41	Op	1
RZ Sco156MMe -175 4.19 Op, H_2O $1,67$ SW Sco260MMe -74 Op1SW Sco234MMe -20 Op,OH $1,43$ TU Sco373MMe -16 2.75 Op,OH $1,43$ WW Sco431MMe $+11$ 2.09 Op 1 KS Sco429MMe $+13$ Op 1 S Scl362MMe $+23$ 0.31 Op,SiO $1,15,32,50$ U Scl335MM8 -8 3.80 Op 48 V Scl296MMe $+44$ 3.13 Op 3 SW Scl146SRMe $+32$ 3.72 Op 1 SY Scl415MM6e $+24$ 2.61 Op,OH,H_2O $15,31,48$ V Sct252MMe $+30$ Op 3 ST Sct219MMe $+46$ Op,OH,H_2O $12,42,80,32,57,58$ S Ser371MMe $+48$ Op 3 U Ser237MMe $02,53$ Op 1 RU Ser280M $+8$ Op 3 RV Ser269MMe -14 3.22 OH,H_2O $3,30$ W Ser269MMe -14 3.22 OH,H_2O $3,30$ RV Ser269MMe -14 3.22 OH	RW Sco	389	M	Me	-79	1.30	Op,OH,H ₂ O,SiO	1,29.32,43,55.65
SW Sco260MMe -74 Op1SY Sco234MMe -20 Op,OH1,43SY Sco233MMe -16 2.75Op,OH1,43WW Sco431MMe $+11$ 2.09Op1KS Sco429MMe -130 Op1S Scl362MMe $+23$ 0.31Op,SiO1,15,32,50U Scl335MM8 -8 3.80Op48V Scl296MMe $+44$ 3.13Op3SW Scl146SRMe $+32$ 3.72Op1SY Scl415MM6e $+24$ 2.61Op,OH,H2O15,31,48V Sct252MMe $+30$ Op3ST Sct219MMe $+46$ Op3R Ser356MMe $+15$ 0.82Op,H2O,CO,SiO1,24,28,30,31,32,43,58S Ser371MMe -32 3.53Op1U Ser237MMe -32 3.53Op1U Ser236M $+74$ 0p33W Ser365MMe $+6$ 1.76Op,H2O3,30WS Ser269MMe -9 2.46OH,H2O15WW Ser365MMe -9 2.46OH,H2O,SiO,CO29,30,31,32,43,44,58BC Ser <td>RZ Sco</td> <td>156</td> <td>Μ</td> <td>Me</td> <td>-175</td> <td>4.19</td> <td>Op,H₂O</td> <td>1,67</td>	RZ Sco	156	Μ	Me	-175	4.19	Op,H ₂ O	1,67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SW Sco	260	Μ	Me	-74		Op	1
10Stol373MMe-10273OpOn1,43WW Sco431MMe+112.09Op1KS Sco429MMe+230.31Op,SiO1,15,32,50S Scl362MMe+240.31Op,SiO1,15,32,50U Scl335MM8-83.80Op48V Scl296MMe+443.13Op3SW Scl146SRMe+323.72Op1SY Scl415MM6e+242.61Op,OH,H2O15,31,48V Sct252MMe+30Op3ST Sct219MMe+46Op3S Ser371MMe+46Op1U Ser237MMe+150.82Op,OH,H2O,SiO1,24,28,03,257,58S Ser371MMe+323.53Op1U Ser237MMe-323.53Op1U Ser237MMe-143.22OH,H2O,SiO1,28,03,13,24,358T Ser338MMe-143.22OH,H2O15W Ser465MMe-160.39H2O,SiO12,15C Ser245MMe+54Op3,30W Ser425MMe-160.39H2O,SiO12,15C Ser	SY Sco	234	M	Me	-20	2.75	Op,OH Op OU	1,43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WW Sco	373 431	M	Me	-10 + 11	2.75	Op,OH Op	1,45
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	KS Sco	429	M	Me	-130	2.09	Op	1
U Scl335MM8 -8 3.80Op448V Scl296MMe $+44$ 3.13Op3SW Scl146SRMe $+32$ 3.72Op1SY Scl415MM6e $+24$ 2.61Op,OH,H2O15,31,48V Sct252MMe $+30$ Op3ST Sct219MMe $+46$ Op3R Ser356MMe $+15$ 0.82Op,H2O,COSiO1,24,28,30,32,57,58S Ser371MMe $+8$ 1.76Op,OH,H2O,SiO1,24,33,03,1,32,43,58T Ser338MMe02.53Op1U Ser237MMe -32 3.53Op1RU Ser269MMe -14 3.22OH,H2O15WW Ser365MMe $+6$ 1.76Op,H2O3,30WX Ser425MMe -9 2.46OH,H2O,SiO,CO29,30,31,32,43,44,58BC Ser143MMe -16 0.39H2O,SiO12,15CU Ser263M -77 Op3CY Ser289MMe $+7$ 3.06Op3S Sex264MMe -3 3.41Op5R Tau320MMe $+28$ 0.82Op,OH,H2O,SiO1,30,31,32,43,58S Tau320MMe $+43$ </td <td>S Scl</td> <td>362</td> <td>Μ</td> <td>Me</td> <td>+23</td> <td>0.31</td> <td>Op,ŜiO</td> <td>1,15,32,50</td>	S Scl	362	Μ	Me	+23	0.31	Op,ŜiO	1,15,32,50
V Scl296MMe+443.13Op3SW Scl146SRMe+32 3.72 Op1SY Scl415MM6e+24 2.61 Op,OH,H2O15,31,48V Sct252MMe+30Op3ST Sct219MMe+46Op3R Ser356MMe+15 0.82 Op,H2O,CO,SiO $1.24,28,30,32,57,58$ S Ser371MMe+8 1.76 Op,OH,H2O,SiO $1.24,28,30,32,57,58$ T Ser338MMe0 2.53 Op1U Ser237MMe -32 3.53 Op1RU Ser269M+8Op3RRV Ser269MMe -14 3.22 OH,H2O15WW Ser365MMe+6 1.76 Op,H2O $3,30$ WX Ser425MMe -9 2.46 OH,H2O,SiO,CO $29,30,31,32,43,44,58$ BC Ser245MMe -16 0.39 H_2O,SiO $12,15$ CU Ser263M -77 Op3CY Ser289MMe $+7$ 3.06 Op 3 S Sex264MMe -3 3.41 Op 5 R Tau320MMe $+28$ 0.82 Op,OH,H2O,SiO $1,30,31,32,43,58$ S Tau374Me $+34$ <	U Scl	335	M	M8	-8	3.80	Op	48
Sit ofHoHoHoHoHoHoHoHoSY Scl415MMée $+24$ 2.61Op,OH,H ₂ O15,31,48V Sct252MMe $+30$ Op3ST Sct219MMe $+46$ Op3R Ser356MMe $+15$ 0.82Op,H ₂ O,CO,SiO1,24,28,30,32,57,58S Ser371MMe $+8$ 1.76Op,OH,H ₂ O,SiO1,28,30,31,32,43,58T Ser338MMe02.53Op1U Ser237MMe -32 3.53Op1RU Ser280M $+8$ Op33RV Ser269MMe -14 3.22OH,H ₂ O15WW Ser365MMe $+6$ 1.76Op,H ₂ O3,30WX Ser425MMe $+9$ 2.46Op3,46BC Ser245MMe $+54$ Op3,46BG Ser143MMe -16 0.39H ₂ O,SiO12,15CU Ser263M -77 Op3CY Ser289MMe $+7$ 3.06Op3S Sex264MMe -3 3.41Op3S Tau320MMe $+34$ 3.09Op,OH,H ₂ O,SiO1,30,31,32,43,58V Tau168MMe $+69$ 4.10Op5	V SCI SW Sci	290 146	SR	Me	$^{+44}_{+32}$	3.13	Op	5
V Sct252MMe+30Op3ST Sct219MMe+46Op3R Ser356MMe+150.82Op,H ₂ O,CO,SiO1,24,28,30,32,57,58S Ser371MMe+81.76Op,OH,H ₂ O,SiO1,28,30,31,32,43,58T Ser338MMe02.53Op1U Ser237MMe-323.53Op1RU Ser280M+8Op33RV Ser269MMe-143.22OH,H ₂ O15WW Ser365MMe+61.76Op,H ₂ O3,30WX Ser425MMe-92.46OH,H ₂ O,SiO,CO29,30,31,32,43,44,58BC Ser245MMe-160.39H ₂ O,SiO12,15CU Ser263M-77Op33CY Ser289MMe+73.06Op3S Sex264MMe-33.41Op5R Tau320MMe+343.09Op,OH,H ₂ O,SiO1,30,31,32,43,58V Tau168MMe+694.10Op5	SY Scl	415	M	M6e	+24	2.61	Op.OH.H ₂ O	15.31.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V Sct	252	Μ	Me	+30		Op	3
R Ser356MMe $+15$ 0.82 Op,H_2O,CO,SiO $1,24,28,30,32,57,58$ S Ser371MMe $+8$ 1.76 Op,OH,H_2O,SiO $1,28,30,31,32,43,58$ T Ser338MMe 0 2.53 Op 1 U Ser237MMe -32 3.53 Op 1 RU Ser280M $+8$ Op 3 RV Ser269MMe -14 3.22 OH,H_2O 15 WW Ser365MMe $+6$ 1.76 Op,H_2O $3,30$ WX Ser425MMe -9 2.46 OH,H_2O,SiO,CO $29,30,31,32,43,44,58$ BC Ser245MMe -9 2.46 OH,H_2O,SiO,CO $29,30,31,32,43,44,58$ BG Ser143MMe -16 0.39 H_2O,SiO $12,15$ CU Ser263M -77 Op 3 CY Ser289MMe $+7$ 3.06 Op 3 S Sex264MMe -3 3.41 Op 5 S Tau374MMe $+34$ 3.09 Op,OH,SiO $1,30,31,32,43,58$ S Tau374MMe $+34$ 3.09 Op,OH,SiO $1,30,31,32,43,58$	ST Sct	219	Μ	Me	+46		Op	3
S Ser 371 MMe $+8$ 1.76 Op,OH,H_2O,SIO $1,28,30,31,32,43,58$ T Ser338MMe0 2.53 Op1U Ser237MMe -32 3.53 Op1RU Ser280M $+8$ Op3RV Ser269MMe -14 3.22 OH,H_2O 15WW Ser365MMe $+6$ 1.76 Op,H_2O $3,30$ WX Ser425MMe -9 2.46 OH,H_2O,SiO,CO $29,30,31,32,43,44,58$ BC Ser245MMe -9 2.46 OH,H_2O,SiO,CO $29,30,31,32,43,44,58$ BC Ser245MMe -16 0.39 H_2O,SiO $12,15$ CU Ser263M -77 Op 3 CY Ser289MMe $+7$ 3.06 OpS Sex264MMe -3 3.41 OpS Sex264MMe $+34$ 3.09 Op,OH,SiO $1,30,31,32,43,58$ S Tau374MMe $+34$ 3.09 Op,OH,SiO $1,15,66$ V Tau168MMe $+69$ 4.10 Op 5	R Ser	356	M	Me	+15	0.82	Op,H ₂ O,CO,SiO	1,24,28,30,32,57,58
I Sci556MMc662.55 Op 1U Ser237MMe-323.53 Op 1RU Ser280M+8 Op 3RV Ser269MMe-143.22 OH, H_2O 15WW Ser365MMe+61.76 Op, H_2O 3,30WX Ser425MMe-92.46 OH, H_2O, SiO, CO 29,30,31,32,43,44,58BC Ser245MMe+54 Op 3,46BG Ser143MMe-160.39H_2O, SiO12,15CU Ser263M-77 Op 32CY Ser289MMe+73.06 Op 3S Sex264MMe-33.41 Op 5R Tau320MMe+280.82 Op, OH, H_2O, SiO 1,30,31,32,43,58S Tau374MMe+343.09 Op, OH, SiO 1,15,66V Tau168MMe+694.10 Op 5	S Ser	371	M	Me Me	$^{+8}$ 0	1.70	Op,OH,H_2O,SiO	1,28,30,31,32,43,58
RU Ser280M+8Op3RV Ser269MMe-14 3.22 OH, H_2O 15WW Ser365MMe+6 1.76 Op, H_2O $3,30$ WX Ser425MMe-9 2.46 OH, H_2O, SiO, CO $29,30,31,32,43,44,58$ BC Ser245MMe+54Op $3,46$ BG Ser143MMe-16 0.39 H_2O, SiO $12,15$ CU Ser263M-77Op 3 CY Ser289MMe+7 3.06 Op 3 S Sex264MMe-3 3.41 Op 5 R Tau320MMe+28 0.82 Op, OH, H_2O, SiO $1,30,31,32,43,58$ S Tau374MMe+34 3.09 Op, OH, SiO $1,15,66$ V Tau168MMe+69 4.10 Op 5	U Ser	237	M	Me	-32	3.53	Op	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RU Ser	280	Μ		+8		Op	3
WW Ser365MMe+61.76Op,H2O3,30WX Ser425MMe -9 2.46OH,H2O,SiO,CO29,30,31,32,43,44,58BC Ser245MMe $+54$ Op3,46BG Ser143MMe -16 0.39H2O,SiO12,15CU Ser263M -77 Op3CY Ser289MMe $+7$ 3.06OpS Sex264MMe -3 3.41Op5R Tau320MMe $+28$ 0.82Op,OH,H2O,SiO1,30,31,32,43,58S Tau374MMe $+34$ 3.09Op,OH,SiO1,15,66V Tau168MMe $+69$ 4.10Op5	RV Ser	269	М	Me	-14	3.22	OH,H ₂ O	15
WX Ser 425 MMe -9 2.46 OH, H_2O, SIO, CO $29, 50, 51, 52, 43, 44, 58$ BC Ser 245 MMe $+54$ Op $3, 46$ BG Ser143MMe -16 0.39 H_2O, SIO $12, 15$ CU Ser 263 M -77 Op 3 CY Ser289MMe $+7$ 3.06 OpS Sex 264 MMe -3 3.41 OpR Tau 320 MMe $+28$ 0.82 Op,OH,H_2O,SIO $1,30,31,32,43,58$ S Tau 374 MMe $+34$ 3.09 Op,OH,SIO $1,15,66$ V Tau168MMe $+69$ 4.10 Op 5	WW Ser	365	M	Me	+6	1.76	Op,H_2O	3,30
BG Ser143MMe-16 0.39 H_2O,SiO $12,15$ CU Ser263M -77 Op3CY Ser289MMe $+7$ 3.06 OpS Sex264MMe -3 3.41 Op5R Tau320MMe $+28$ 0.82 Op,OH,H ₂ O,SiO $1,30,31,32,43,58$ S Tau374MMe $+34$ 3.09 Op,OH,SiO $1,15,66$ V Tau168MMe $+69$ 4.10 Op5	WA Ser BC Ser	425 245	M	Me	-9 +54	2.40	0H,H ₂ 0,S10,C0 On	29,50,51,52,43,44,58 3 46
CU Ser 263 M -77 Op 3 CY Ser 289 M Me +7 3.06 Op 3 S Sex 264 M Me -3 3.41 Op 5 R Tau 320 M Me +28 0.82 Op,OH,H ₂ O,SiO 1,30,31,32,43,58 S Tau 374 M Me +34 3.09 Op,OH,SiO 1,15,66 V Tau 168 M Me +69 4.10 Op 5	BG Ser	143	M	Me	-16	0.39	H ₂ O.SiO	12,15
CY Ser 289 M Me +7 3.06 Op 3 S Sex 264 M Me -3 3.41 Op 5 R Tau 320 M Me +28 0.82 Op,OH,H ₂ O,SiO 1,30,31,32,43,58 S Tau 374 M Me +34 3.09 Op,OH,SiO 1,15,66 V Tau 168 M Me +69 4.10 Op 5	CU Ser	263	Μ	-	-77		Op	3
S Sex 264 M Me -3 3.41 Op 5 R Tau 320 M Me +28 0.82 Op,OH,H ₂ O,SiO 1,30,31,32,43,58 S Tau 374 M Me +34 3.09 Op,OH,SiO 1,15,66 V Tau 168 M Me +69 4.10 Op 5	CY Ser	289	Μ	Me	+7	3.06	Op	3
K Tau520MMe ± 26 0.62 Op,OH,H_2O,SIO $1,50,51,52,43,58$ S Tau374MMe ± 34 3.09 Op,OH,SiO $1,15,66$ V Tau168MMe ± 69 4.10 Op 5	S Sex	264	M	Me	-3	3.41	Op Op OH H O SiO	5
V Tau 168 M Me +69 4.10 Op 5	K Tau S Tau	320 374	M	Me	+28 +34	3.09	Op,On, n_2 O,SIO On OH,SiO	1,50,51,52,45,58
	V Tau	168	M	Me	+69	4.10	Op	5

Name	Р	Var	Sp	RV	Ē	Method	References
	(d)			$(\mathrm{kms^{-1}})$	(mag)		
Z Tau	466	М	SeM	0	3.36	Op	3
RX Tau	331	M M	Me Me	-31 + 37	1.21	Op,OH,H ₂ O,SiO	1,30,61,84
AG Tau	298	M	IVIC	+37 + 21		Op Op	3
AW Tau	654	Μ	Μ	+1	3.06	OH,H ₂ O,SiO	29,30,31,41
IK Tau	470	М	Me	+46	0.69	OH,H ₂ O,SiO,CO,SO	10,14,19,20,29,30,31,32,33,34,36,40,44,49,58
R Tel	342 461	М	M9 Me	+82 + 8	5.03	Op	48
U Tel	445	M	Me	-54	1.39	Op,SiO	1,50
W Tel	303	М	Me	-18	4.50	Op	1
X Tel	309 415	M M	M5e SiO	$^{-65}$	4.58	Op	48 50
TY Tel	361	M	SiO	-51	2.99	SiO	50
BH Tel	210	М	Me	+22	a (a	Op	1
BQ Tel GX Tel	290 345	M M	Me M8e	+10 + 57	3.43	Op	1 48
R Tri	266	M	Me	+63	0.97	Op,H ₂ O,SiO	1,30,61
T Tri	324	Μ	Me	-113		Õp	3
Z TrA	150	M	Me Ma	-27	3.53	Op Op	1
T Tuc	240 250	M	Me	-22 -48	4.37	Op Op	1
U Tuc	264	М	Me	-23	2.95	Op	1
TZ Tuc	239	M	Me	+195	2.52	Op	1
UU Iuc R IIMa	327	M	M4e Me	+28 + 31	3.53 1.37	Op Op H ₂ O SiO	48 1 8 28 30 32
S UMa	225	M	Se	+6	3.04	Op	1
T UMa	256	М	Me	-97	2.94	Op,H ₂ O,SiO	1,28,30,57,66
X UMa Z UMa	249	M SRb	Me Me	-83 -55	0.80	Op Op	1
RR UMa	230	M	Me	-41	0.07	Op	1
RS UMa	258	Μ	Me	-28		Op, H_2O	1,30
RU Uma	252	M	Me	-61	2 70	Ор	5
R UMi	325	SRa	Me	-38 -23	0.19	H_2O .SiO	30.61
S UMi	331	М	Me	-49	0.20	Op,SiO	1,32,56
T UMi	301	M	Me	-9	2.58	Op,H ₂ O	1,30
U UMi W Vel	330 394	M	Me Me	-27 + 4	0.84	Op,OH,SiO Op OH SiO	1,32,43
Y Vel	449	M	Me	-1	1.19	Ор	1
Z Vel	411	Μ	Me	+7	0.89	Op	1
RS Vel	409	M M2	Me Me	$^{+5}_{-25}$	0.06	Op Op	1
RU Vel	125	SR?	Me	-5^{23}		Op Op	1
RW Vel	443	Μ	Me	+5	0.41	Op,SiO	1,50
WX Vel	411	M	Me	+31	1.81	Op	1
R Vir	142	M	Me	+29 -28	0.38	Op Op OH SiO	1 15 28 57
S Vir	375	M	Me	$+5^{-5}$	0.33	Op,H ₂ O,SiO,CO	1,24,28,30,32,65
T Vir	339	M	Me	+10	3.23	Op,OH,H ₂ O,SiO	1,29,30,31,43,66
U Vir V Vir	206	M M	Me Me	-48 + 33	4.01	Op	1
Y Vir	218	M	Me	+7	4.70	Op	1
Z Vir	305	Μ	Me	+66	4.71	Op	1
RR Vir	217	M	M? Me	-45 -24	7.16		3 1 28 20 30 31 32 43 58
RV Vir	265	M	Me	$+32^{+}$	5.14	Op,011,1120,510	1,26,29,50,51,52,45,58
SU Vir	208	Μ	Me	+19	5.07	Op	1
SV Vir	295	M	Me	0	3.07	H ₂ O	30
AQ Vir BZ Vir	292 150	M	Me M5e	-7 + 2	5.34	Op	3 46
T Vol	175	M	Me	-15	3.73	Op	1
R Vul	136	M	Me	-14	3.24	Op	1
KU Vul RW Vul	173	SRa M	Me M	-88 -33		Op Op	1
RX Vul	457	M	Me	+12	1.06	Op	3,46
SZ Vul	253	М		-99		Op	3
XY Vul XZ Vul	288	M M	Me M5a	-12	2 70	Op Op	3
BY Vul	305	M	wise	$^{-8}$ +26	2.10	Op	40
CI Vul	317	М		-24		Op	3

Table A2 - continued

Name	<i>P</i> (d)	Var	Sp	$\frac{\text{RV}}{(\text{km s}^{-1})}$ (1)	<i>K</i> Method (mag)	References
CN Vul	330	M	Me	+7	OH	19
DE Vul	298	M	M	+11	Op	3

Notes to Table A2: (1) Feast (1963). (2) Feast et al. (1972). (3) Smak & Preston (1965). (4) -. (5) Kennan, Garrison & Deutsch (1974). (6) Wallerstein (1975). (7) Wallerstein & Fawley (1980). (8) Benson & Little-Marenin (1996). (9) Imai et al. (1997). (10) Cernicharo et al. (1997). (11) -. (12) Lewis (1997a). (13) Yates & Cohen (1996). (14) Bujarrabal et al. (1996). (15) Lewis, David & Le Squeren (1995). (16) Lewis (1994). (17) Brand et al. (1994). (18) Szymczak et al. (1995). (19) Lewis (1997b). (20) Engels & Lewis (1996). (21) -. (22) -. (23) -. (24) Young (1995). (25) Menten & Young (1995). (26) David et al. (1993). (27) Chengalur et al. (1993). (28) Barbier et al. (1988). (29) te Lintel Hekkert et al. (1989). (30) Cesaroni et al. (1988). (31) Comoretto et al. (1990). (32) Cho, Kaifu & Ukita (1996). (33) Sahai & Wannier (1992). (34) Lewis, Eder & Terzian (1990). (35) Sivagnanam et al. (1990). (36) Alcolea & Bujarrabal (1992). (37) Le Squeren et al. (1992). (38) Le Bertre & Nyman (1990). (39) Wallerstein & Dominy (1988). (40) Alcolea, Bujarrabal & Gallego (1989). (41) Jiang et al. (1996). (42) Dominy, Wallerstein & Suntzeff (1985). (43) Sivagnanam et al. (1989). (44) Margulis et al. (1990). (45) te Lintel Hekkert et al. (1991). (46) Perry & Bidelman (1965). (47) Kerschbaum, Olofsson & Hron (1996). (48) Whitelock et al. (1994). (49) Nyman et al. (1992). (50) Haikala (1990). (51) Eder, Lewis & Terzian (1988). (52) -. (53) Slootmaker, Herman & Habing (1985). (54) Ukita & Le Squeren (1984). (55) Lepine, Le Squeren & Scalise (1978). (56) Barcia et al. (1985). (57) Heske (1989). (58) Spencer et al. (1981). (59) Benson & Little-Marenin (1989). (60) Dickinson et al. (1986). (61) Bujarrabal, Planesas & del Romero (1987). (62) Kleinmann, Dickinson & Sargent (1978). (63) Engels, Schmid-Burgk & Walmsley (1988). (64) Bowers & Hagen (1984). (65) Lepine, Le Squeren & Scalise (1979). (66) Jewell et al. (1985). (67) Little-Marenin & Benson (1988). (68) Lewis & Engels (1988). (69) -. (70) Lepine, Paes de Barros & Gammon (1976). (71) Knowles & Batchelor (1978). (72) Deguchi, Nakada & Sahai (1990). (73) Silverglate et al. (1979). (74) Robinson, Caswell & Goss (1971). (75) Crocker & Hagen (1983). (76) Nyman, Johansson & Booth (1986). (77) Deguchi, Nakada & Forster (1989). (78) -. (79) -. (80) Balister et al. (1977). (81) -. (82) -. (83) Dickinson (1976). (84) Bowers & Sinha (1978). (85) Bowers & Kerr (1977).

uncertainties, there is no significant difference between the velocities derived from H_2O , SiO or CO, and those derived from OH, and no zero-point correction has been applied to these results. The optical velocities, however, are systematically more positive by 3.9 ± 0.7 km s⁻¹ than the OH ones. This is in the same sense as previously reported (Reid 1976; Barbier et al. 1988) and no doubt results from the complex dynamics of Mira atmospheres. There is some slight evidence in Fig. A1 of a dependence of the OH–optical difference on period. A linear fit of this difference gives

$$OH - optical = -0.015P + 1.31$$
 (A1)

All the optical radial velocities used here have been corrected to the OH zero-point, using this equation. There was a suggestion in the earlier data (Reid 1976) that the OH – optical difference might not be the same for the subsample of Miras for which absorptionline velocities were measured and that for which the effective absorption velocity was derived (as described above) from measurements of emission lines. In the present (enlarged) sample, any such effect is negligibly small. We find

(i) for 32 stars with directly measured absorption velocities and OH maser lines, a mean difference from equation (A1) of

$$-1.0 \pm 0.8(\sigma = 4.4) \,\mathrm{km \, s^{-1}}$$

(ii) for 45 stars with effective absorption velocities inferred from emission lines and with measured OH maser lines, a mean difference from equation (A1) of

$$+0.7 \pm 1.1(\sigma = 7.4) \,\mathrm{km \, s^{-1}}$$

The difference between these two samples is not significant $(1.7 \pm 1.4 \,\mathrm{km \, s^{-1}})$ and no correction for this has been applied. The standard deviations (σ) of these two samples, together with those shown in Table A1, give some indication of the uncertainty attached to the radial velocities.

In compiling these data, two groups of objects have been specifically omitted. The first group consists of Miras (and OH/IR variables) in the Galactic bulge itself. The second group consists of very long-period Miras with thick circumstellar shells and longperiod OH/IR variables with thick shells. Whilst such stars are of great interest, their distances are difficult to estimate, at least using *K*-band photometry and a PL relation. They are therefore not relevant to the main topic of the present paper. This means that the catalogue does not claim completeness for Mira-like variables (including OH/IR stars) of periods greater than \sim 500 d.

With some minor exceptions, the optical radial velocities are published in a heliocentric system. Radio astronomers generally publish their velocities corrected for local Solar motion. Unfortunately, they rarely state what they have assumed the local Solar motion to be. However, it would appear that almost always they adopt a Solar motion of $20 \,\mathrm{km \, s^{-1}}$ towards $\alpha = 18^{\mathrm{h}}$ and $\delta = +30^{\circ}$ (1900) (see, for instance, Kerr 1962; Lindblad 1966). We have therefore re-reduced all the radio data (and a small number of optical observations) to heliocentric using these values. The radial velocities marked ' V_{other} ' in table 5 of Whitelock et al. (1994) were erroneously corrected to heliocentric. Corrected values were used in the present paper. Sometimes identical (radio) velocities are given in two, or more, places. It is usually clear from the context whether these are independent measurements or not. In general, when the radial velocity of a star has been determined in a number of different ways (optical, OH, etc.), straight means have been taken of the various estimates (after correcting the optical values to the OH zero-point, as described above). However, in some cases, observations that seem rather uncertain have been rejected. This includes a very small number of cases when the results from different methods were strongly discrepant. Table A2 lists the results. It also contains the following information, mostly from the General Catalogue of Variable Stars: the pulsation period (P), the type of variability (Var) and the spectral type (Sp). The Kmagnitude that is listed in column 6 (\bar{K}) is taken from SAAO data (Paper I and unpublished) where possible, but otherwise from Gezari, Pitts & Schmitz (1997). It is the mean of the maximum and minimum values recorded.

This paper has been typeset from a $T_{\ensuremath{E}} X/I \ensuremath{\Delta} T_{\ensuremath{E}} X$ file prepared by the author.