Table of Contents

Warranty ... v
EU Declaration of Conformity ... vi

Preface .. vii
Confidentiality & Proprietary Rights .. vii
Sales, Tech Support & Service ... viii
Service Information .. viii
Newport Corporation RMA Procedures ... viii
Packaging ... viii

1.0 —** Safety Precautions** ... 1
1.1 Definitions and Symbols ... 1
 General Warning or Caution ... 1
 Electric Shock .. 1
 European Union CE Mark ... 1
1.2 Warnings and Cautions ... 2
 General Warnings and Cautions .. 2

2.0 —** System Overview** ... 3
2.1 General Description .. 3
2.2 Part Numbers .. 3
2.3 SMC100CC ... 4
 Contents of Delivery .. 4
 Specifications .. 5
 Dimensions .. 5
2.4 SMC-RC ... 6
 Specifications .. 6
 Dimensions .. 6
2.5 SMC-PS80 .. 7
 Specifications .. 7
 Dimensions .. 7
2.6 System Environmental Specifications ... 7
2.7 Connector Identification ... 8
2.8 Serial Communication Settings ... 8

3.0 —** Getting Started** ... 9
3.1 SMC100CC Software Installation .. 9
3.2 Communication Settings ... 9
 RS-232-C Communication (Using SMC-232 Cable) ... 9
 USB Communication (Using SMC-USB Interface) ... 9
3.3 Communication to a Single SMC100CC ... 10
SMC100CC Single-Axis Motion Controller/Driver for DC Motors

3.4 Communication to Several SMC100CC .. 12
 Controller Address Setting .. 12
 Building the System .. 14
 Enable all controllers .. 15
 Configuring the Controller ... 17

4.0 — SMC100CC with SMC-RC Keypad .. 18

5.0 — Programming .. 20
 5.1 State Diagram ... 20
 5.2 Initialization .. 21
 5.3 Command Syntax ... 22
 5.4 Command Execution Time .. 22
 5.5 Command Set ... 23

6.0 — Connector Pinout .. 73
 6.1 DC IN and DC OUT (Female Ø 2.1 x Ø 5.5 x 11 mm) 73
 6.2 RS-232-C (Male Sub-D9) ... 73
 6.3 RS-485 IN and RS-485 OUT (Female RJ11-6/6) 73
 6.4 Keypad (Female RJ9-4/4) ... 73
 6.5 GPIO (Female Sub-D15) ... 74
 6.6 Motor (Female Sub-D25) .. 74

7.0 — Backlash Compensation ... 75

8.0 — ESP Stages ... 75

9.0 — PID Control Loop Structure .. 76

10.0 — Maintenance and Service .. 77
 10.1 Enclosure Cleaning ... 77
 10.2 Obtaining Service ... 77

Service Form .. 78
Warranty

Newport Corporation warrants that this product will be free from defects in material and workmanship and will comply with Newport’s published specifications at the time of sale for a period of one year from date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at Newport’s option.

To exercise this warranty, write or call your local Newport office or representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the product, freight prepaid, to the indicated service facility. Repairs will be made and the instrument returned freight prepaid. Repaired products are warranted for the remainder of the original warranty period or 90 days, whichever occurs last.

Limitation of Warranty

The above warranties do not apply to products which have been repaired or modified without Newport’s written approval, or products subjected to unusual physical, thermal or electrical stress, improper installation, misuse, abuse, accident or negligence in use, storage, transportation or handling.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. NEWPORT CORPORATION SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE PURCHASE OR USE OF ITS PRODUCTS.

First printing 2005

Copyright 2005 by Newport Corporation, Irvine, CA. All rights reserved. No part of this manual may be reproduced or copied without the prior written approval of Newport Corporation. This manual is provided for information only, and product specifications are subject to change without notice. Any change will be reflected in future printings.
EU Declaration of Conformity

We declare that the accompanying product, identified with the “CE” mark, complies with requirements of the Electromagnetic Compatibility Directive, 89/336/EEC and the Low Voltage Directive 73/23/EEC.

Product Name: SMC100CC Motion Controller/Driver

Model Number: SMC100CC Motion Controller/Driver

Year CE mark affixed: 2005

Type of Equipment: Electrical equipment for measurement, control and laboratory use.

Standards Applied:
Compliance was demonstrated to the following standards to the extent applicable:
 - EN 61326-1: 1997 “Electrical equipment for measurement, control and laboratory use - EMC requirements”.
 This equipment meets:
 - EN 61000-4-3(96)+A1(98)+A2(2001)
 - EN 61000-4-2(95)+A1(98)+A2(2001)
 - EN 61000-4-6(96)+A1(2001)
 - EN 61000-4-4(95)+A1(2001)
 - EN 61000-4-5(95)+A1(2001)
 - EN 61000-4-11(94)+A1(2001)
 - EN 61000-3-3(95)+A1(2001)
 - EN 61000-3-2(2000)

IEC 61010-1: 2001 “Safety requirements for electrical equipment for measurement, control and laboratory use”.

Alain Danielo
VP European Operations
Zone Industrielle
45340 Beaune-la-Rolande, France

Dan Dunahay
Director of Quality Systems
1791 Deere Avenue
Irvine, Ca. USA
SMC100CC Single-Axis Motion Controller/Driver for DC Motors

Preface

Confidentiality & Proprietary Rights

Reservation of Title
The Newport Programs and all materials furnished or produced in connection with them (‘Related Materials’) contain trade secrets of Newport and are for use only in the manner expressly permitted. Newport claims and reserves all rights and benefits afforded under law in the Programs provided by Newport Corporation.

Newport shall retain full ownership of Intellectual Property Rights in and to all development, process, align or assembly technologies developed and other derivative work that may be developed by Newport. Customer shall not challenge, or cause any third party to challenge, the rights of Newport.

Preservation of Secrecy and Confidentiality and Restrictions to Access
Customer shall protect the Newport Programs and Related Materials as trade secrets of Newport, and shall devote its best efforts to ensure that all its personnel protect the Newport Programs as trade secrets of Newport Corporation. Customer shall not at any time disclose Newport’s trade secrets to any other person, firm, organization, or employee that does not need (consistent with Customer’s right of use hereunder) to obtain access to the Newport Programs and Related Materials. These restrictions shall not apply to information (1) generally known to the public or obtainable from public sources; (2) readily apparent from the keyboard operations, visual display, or output reports of the Programs; (3) previously in the possession of Customer or subsequently developed or acquired without reliance on the Newport Programs; or (4) approved by Newport for release without restriction.
Sales, Tech Support & Service

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
(949) 253-1461 or (800) 222-6440 x31461
e-mail: sales@newport.com

Technical Support
(949) 253-1406 or (800) 222-6440 x31406
e-mail: tech@newport.com

Service, RMAs & Returns
(949) 253-1694 or (800) 222-6440 x31694
e-mail: istd.service@newport.com

Europe
MICRO-CONTROLE
1, rue Jules Guesde – Bât. B
ZI Bois de l’Épine – BP189
91006 Evry Cedex
France

Sales & Technical Support
+33 (0)1.60.91.68.68
e-mail: france@newport-fr.com

Service & Returns
+33 (0)2.38.40.51.55

Service Information

The user should not attempt any maintenance or service of the SMC100CC Controller/Driver and its accessories beyond the procedures outlined in this manual. Any problem that cannot be resolved should be referred to Newport Corporation. When calling Newport regarding a problem, please provide the Tech Support representative with the following information:

- Your contact information.
- System serial number or original order number.
- Description of problem.
- Environment in which the system is used.
- State of the system before the problem.
- Frequency and repeatability of problem.
- Can the product continue to operate with this problem?
- Can you identify anything that may have caused the problem?

Newport Corporation RMA Procedures

Any SMC100CC Controller/Driver being returned to Newport must have been assigned an RMA number by Newport. Assignment of the RMA requires the item serial number.

Packaging

SMC100CC Controller/Driver being returned under an RMA must be securely packaged for shipment. If possible, reuse the original factory packaging.
1.0 Safety Precautions

1.1 Definitions and Symbols

The following terms and symbols are used in this documentation and also appear on the SMC100CC Controller/Driver where safety-related issues occur.

General Warning or Caution

![Exclamation Symbol](image)

Figure 1: General Warning or Caution Symbol.

The Exclamation Symbol in figure 1 may appear in Warning and Caution tables in this document. This symbol designates an area where personal injury or damage to the equipment is possible.

Electric Shock

![Electrical Shock Symbol](image)

Figure 2: Electrical Shock Symbol.

The Electrical Shock Symbol in Figure 2 may appear on labels affixed to the SMC100CC Controller/Driver. This symbol indicates a hazard arising from dangerous voltage. Any mishandling could result in irreparable damage to the equipment, in personal injury, or death.

European Union CE Mark

![CE Mark](image)

Figure 3: CE Mark.

The presence of the CE Mark on Newport Corporation equipment means that it has been designed, tested and certified as complying with all applicable European Union (CE) regulations and recommendations.
1.2 Warnings and Cautions

The following are definitions of the Warnings, Cautions and Notes that may be used in this manual to call attention to important information regarding personal safety, safety and preservation of the equipment, or important tips.

WARNING
Situation has the potential to cause bodily harm or death.

CAUTION
Situation has the potential to cause damage to property or equipment.

NOTE
Additional information the user or operator should consider.

General Warnings and Cautions

The following general safety precautions must be observed during all phases of operation of this equipment.

Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the equipment.

- Heed all warnings on the unit and in the operating instructions.
- To prevent damage to the equipment, read the instructions in this manual.
- Only plug the power supply to a grounded power outlet.
- Assure that the power supply is properly grounded to earth ground through the grounding lead of the AC power connector
- Route power cords and cables where they are not likely to be damaged.
- Disconnect or do not plug in the AC power cord in the following circumstances:
 - If the AC power cord or any other attached cables are frayed or damaged.
 - If the power plug or receptacle is damaged.
 - If the unit is exposed to rain or excessive moisture, or liquids are spilled on it.
 - If the unit has been dropped or the case is damaged.
 - If the user suspects service or repair is required.
- Keep air vents free of dirt and dust.
- Keep liquids away from unit.
- Do not expose equipment to excessive moisture (>85% humidity)
- Do not operate this equipment in an explosive atmosphere.
- Disconnect power before cleaning the Controller/Driver unit. Do not use liquid or aerosol cleaners.
- Do not open the SMC100CC Controller/Driver. There are no user-serviceable parts inside.
• Return equipment to Newport Corporation for service and repair.
• Dangerous voltages associated with the 100-240 VAC power supply are present inside the power supply. To avoid injury, do not touch exposed connections or components while power is on.
• Follow precautions for static-sensitive devices when handling electronic circuits.

2.0 System Overview

2.1 General Description

The SMC100CC is a single axis motion controller/driver for DC servo motors up to 48 VDC at 1.5 A rms. It provides a very compact and low-cost solution for driving a variety of Newport and other manufacturers motorized stages from a PC or from the optional SMC-RC remote control.

Communication with the SMC100CC is achieved via a RS-232-C, or from a USB port using the external adapter SMC-USB (requires Windows™ operating system). A Windows based software supports all configurations and enables basic motion. Advanced application programming is simplified by an ASCII command interface and a set of two letter mnemonic commands.

When used with Newport ESP enhanced positioners, the SMC100CC will detect the connected product automatically and provides easy configuration using the supplied Windows-based utility software. This exclusive Newport feature reduces configuration time and provides the best protection of your equipment from any accidental damages.

Up to 31 controllers can be networked through the internal RS-485 communication link. This internal multi-drop full-duplex serial link simplifies communication to several units, without the need for sending "address selection commands". This results in enhanced multi-axes management with improved program readability and faster communication compared to alternative systems based on a RS-232-C chain. The typical execution time for a tell position command is only about 10 ms for the first controller and only about 16 ms for the other controllers. The SMC100CC also features advanced “multi-axes” commands such as “Stop all” or “start a motion of all axes” and performs at a 57,600 baud rate communication speed. Furthermore, for an efficient process control, the SMC100CC features dedicated digital outputs for “In Motion” and for “Not referenced”.

2.2 Part Numbers

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC100CC</td>
<td>Single-axis motion controller/driver for DC servo motors. Includes 0.2 m long power and RS-485 cable.</td>
</tr>
<tr>
<td>SMC-RC</td>
<td>Remote control keypad for SMC100CC.</td>
</tr>
<tr>
<td>SMC-PS80</td>
<td>80 W power supply for SMC100CC.</td>
</tr>
<tr>
<td>SMC-232</td>
<td>RS-232-C cable, 3 m length (DB9F to DB9F).</td>
</tr>
<tr>
<td>SMC-USB</td>
<td>USB interface, Includes one USB to COM port adapter and one RS-232-C cable. Requires Windows™ operating system.</td>
</tr>
<tr>
<td>SMC-CB1</td>
<td>1 m RS-485 cable (only required when RS-485 cable supplied with SMC100CC is too short).</td>
</tr>
<tr>
<td>SMC-CB3</td>
<td>3 m RS-485 cable (only required when RS-485 cable supplied with SMC100CC is too short).</td>
</tr>
</tbody>
</table>
2.3 SMC100CC

Contents of Delivery

- SMC100CC Controller box
- SMC-PSC0.2 Power cable, 0.2 m length
- SMC-CB0.2 RS-485 network cable, 0.2 m length
- SMC-MOTION CD-Rom
- SMC-MANUAL User manual
Specifications

<table>
<thead>
<tr>
<th>General Description</th>
<th>Single-axis motion controller/driver for DC servo motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Capability</td>
<td>DC servo motors, open or closed loop operation</td>
</tr>
<tr>
<td>Motor Output Power</td>
<td>– 48 VDC at 1.5 A rms, 3 A peak</td>
</tr>
<tr>
<td></td>
<td>– 100 kHz PWM switching frequency</td>
</tr>
<tr>
<td>Control loop</td>
<td>– Floating point digital PID loop with velocity and friction feedforward</td>
</tr>
<tr>
<td></td>
<td>– 2 kHz servo rate</td>
</tr>
<tr>
<td></td>
<td>– Backlash compensation</td>
</tr>
<tr>
<td>Motion</td>
<td>Point-to-point motion with S-gamma profile and jerk time control</td>
</tr>
<tr>
<td>Computer interface</td>
<td>– RS-232-C with 57,600 baud rate</td>
</tr>
<tr>
<td></td>
<td>– USB compatible with external adapter SMC-USB (requires Windows™ operating system)</td>
</tr>
<tr>
<td></td>
<td>– RS-485 internal link for chaining up to 31 controllers from the same COM port</td>
</tr>
<tr>
<td>Programming</td>
<td>– 40+ intuitive, 2 letter ASCII commands</td>
</tr>
<tr>
<td></td>
<td>– Command set includes software limits, user units, synchronized motion start, stop all</td>
</tr>
<tr>
<td>General purpose I/O</td>
<td>– 4 TTL out (open collector)</td>
</tr>
<tr>
<td></td>
<td>– 4 TTL in (2.21 kΩ pull up to 5 V)</td>
</tr>
<tr>
<td></td>
<td>– 1 analog input, ±10 V, 8-Bit</td>
</tr>
<tr>
<td>Dedicated inputs</td>
<td>– RS-422 differential encoder inputs for A, B, and I, max. 2 MHz rate</td>
</tr>
<tr>
<td></td>
<td>– Forward and reverse limit, home switch and index pulse</td>
</tr>
<tr>
<td>Dedicated outputs</td>
<td>– 1 open-collector output for “In Motion”</td>
</tr>
<tr>
<td></td>
<td>– 1 open collector output for “Not Referenced”</td>
</tr>
<tr>
<td>Status display</td>
<td>Two color LED</td>
</tr>
<tr>
<td>Internal safety feature</td>
<td>Watchdog timer</td>
</tr>
</tbody>
</table>

Dimensions

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.51</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.34</td>
<td>1.39</td>
</tr>
</tbody>
</table>

[Image of the SMC100CC Single-Axis Motion Controller/Driver for DC Motors]
2.4 SMC-RC

Specifications

<table>
<thead>
<tr>
<th>General description</th>
<th>Remote control keypad for SMC100CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>1 line x 16 characters LCD display for position and short action description of Exec. button depending on controllers state</td>
</tr>
<tr>
<td>Function of push buttons</td>
<td>(from left to right)</td>
</tr>
<tr>
<td>- Jog left</td>
<td>- High jog velocity (when pressed together with jog left or jog right)</td>
</tr>
<tr>
<td>- Jog right</td>
<td>- Exec. (function as indicated in display depending on controllers state)</td>
</tr>
<tr>
<td>Cable</td>
<td>0.5 m helix cable, both sides terminated with RJ11-4/4 connectors</td>
</tr>
</tbody>
</table>

Dimensions

![Dimensions diagram]
2.5 SMC-PS80

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td>100–240 VAC, 47–63 Hz, 1.9 A</td>
</tr>
<tr>
<td>DC Output</td>
<td>48 V, 80 W max.</td>
</tr>
<tr>
<td>Connector</td>
<td>(male Ø 2.1 x Ø 5.5 x 11 mm)</td>
</tr>
</tbody>
</table>

Dimensions

![Dimensions Image]

2.6 System Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>5 °C to 40 °C</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>< 85% relative humidity, non-condensing</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>0 °C to 60 °C, RH < 85% relative humidity, non-condensing</td>
</tr>
<tr>
<td>Installation category</td>
<td>II</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
</tr>
<tr>
<td>Use location</td>
<td>Indoor use only</td>
</tr>
</tbody>
</table>
2.7 Connector Identification

Front side
- **KEYPAD RJ9F**: For SMC-RC remote display and jog keypad. Not functional for the moment.
- **RS-232-C Sub-D9M**: RS-232-C communication port for computer communication
- **RS-485 IN RJ11F**: RS-485 input for chaining several SMC100CC in a multi-drop configuration
- **RS-485 OUT RJ11F**: RS-485 output for chaining several SMC100CC in a multi-drop configuration
- **CONFIG. 4 switches**: Dip switches for communication setup
- **LED LED**: Status LED

Back side
- **DC IN Ø 2.1 x Ø 5.5 x 11 mm**: Power supply input (connect to SMC80-PS)
- **DC OUT Ø 2.1 x Ø 5.5 x 11 mm**: Power supply repeater for connecting several SMC100CC to the same power supply
- **GPIO Sub-D15F**: General purpose inputs/outputs
- **MOTOR Sub-D25F**: Motor connection

2.8 Serial Communication Settings

Communication parameters are preset in the SMC100CC controller and do not require any configuration:

- **Bits per second**: 57,600
- **Data bits**: 8
- **Parity**: None
- **Stop bits**: 1
- **Flow control**: Xon/Xoff
- **Terminator**: C^L_{RF}
3.0 Getting Started

This section guides the user through the proper set-up of the SMC100CC motion control system. When using the SMC100CC controller ONLY in local control with the SMC-RC keypad and NOT from a computer, you can skip this section and continue reading in section 4, SMC100CC with SMC-RC keypad. If not already done, carefully unpack and visually inspect the controllers and the stages for any damage. Place all components on a flat and clean surface.

CAUTION

No cables should be connected to the controller at this point!

First, the controller must be configured properly. When using several SMC100CC controllers from the same COM port through the internal RS-485 communication link, an individual address must be set for each controller. Then, each controller must be configured to the connected stage. For both steps, the software supplied with the SMC100CC is used.

3.1 SMC100CC Software Installation

The SMC100CC utility program (SMC100.exe) is designed to run on any commercially available Pentium™ class desktop personal computer. The computer should have a minimum of 64 MB of RAM. Newport recommends using Windows XP™, or Windows 2000™.

For installation, put the CD in your CD drive and double-click on setup.exe. Follow the instructions on the screen.

3.2 Communication Settings

RS-232-C Communication (Using SMC-232 Cable)

Apply the following settings to the COM port of your PC:

<table>
<thead>
<tr>
<th>Bits per second</th>
<th>57,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>Xon/Xoff</td>
</tr>
<tr>
<td>Terminator</td>
<td>C_{RF}</td>
</tr>
</tbody>
</table>

USB Communication (Using SMC-USB Interface)

Install the software supplied with the SMC-USB on your PC. Follow the instructions supplied with the SMC-USB.

Apply the following settings to the COM port of your PC:

<table>
<thead>
<tr>
<th>Bits per second</th>
<th>57,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>Xon/Xoff</td>
</tr>
<tr>
<td>Terminator</td>
<td>C_{RF}</td>
</tr>
</tbody>
</table>
3.3 Communication to a Single SMC100CC

Set the dip switches on the SMC100CC to FIRST:

Connect the SMC100CC to the RS-232 or to the USB port of your PC. Connect your stage to the SMC100CC (MOTOR connector). Connect the power supply. The LED on the SMC100CC turns RED.

Start the SMC100CC utility program SMC.EXE. The following screen appears:

Press the “Configuration” button. The following screen appears:
Press the “Communication setting” button. The following screen appears:

Select the port number of the COM port of your PC. Press the “Open” button. A message “Communication COM# is opened” appears on the screen. If not, check the COM port settings of your PC and try again.

The input field “Refresh rate (s)” allows changing the screen refresh rate used in the motion portal. Allowed values range from 0.1 s to 10 s. This setting can be changed only when the communication is closed.

Press “Back” button, which gets you back to the previous screen.

Using the SMC100CC with Newport ESP compatible stages

When using the SMC100CC with Newport ESP compatible stages (see label on the stage), press “Stage parameters download”. The following screen appears:

Press “Download”. When successful, after some seconds an according message appears on the screen and the status LED on the SMC100CC changes to orange.

Your system is now correctly configured and ready to use.

For testing, go back two screens, and press the “Motion portal” button. The main user screen comes available. It has eight tabs at the top. Go to the Tab “MOVE” and press the button “HOME”. Your stage should move to the home position and the color of the status LED on the SMC100CC changes to green. When done, enter in the field “Position 1” any allowed position of your stage and press “GO”. Your stage should move to the commanded
absolute position and the current position gets indicated in the position field at the top of the screen. Your system is working correctly and you can now try the other tabs.

Using the SMC100CC with not ESP compatible stages or changing the default values

When using the SMC100CC with not ESP compatible stages, you need to enter the stage parameters manually in the screen “Stage parameters modification”. This screen gets accessed from the “Configuration” screen. In the “Stage parameter configuration” screen you can also change the configuration parameters stored in the controller. But it is not recommended doing this unless you are an experienced user. For further information about the meaning of the different parameters, please refer to the explanations at the corresponding two letter commands named in brackets in section 5.5.

3.4 Communication to Several SMC100CC

When using several SMC100CC controllers through the internal RS-485 communication link, you need to follow specific steps to be successful:

1. Apply individual addresses to each controller.
2. Connect all elements of the system together.
3. Configure each controller to drive the connected stage.

Controller Address Setting

The first thing to do is applying an individual address to each SMC100CC controller.

The address of the FIRST controller connected through RS-232-C remains the address number 1. You don’t need to do anything with this controller. For addressing the other controllers do the following:

Set the dip switches of ALL SMC100CC to FIRST (see graphic below).

Connect ONE, and only one, SMC100CC to the RS-232-C or to the USB port of your PC. It is not needed to connect any stage to the controller. Connect the power supply. The LED turns RED.

Start the SMC100CC utility program SMC.EXE. The following screen appears:
Press the “Configuration” button. The following screen appears:

Press the “Communication setting” button. The following screen appears:

Select the port number of the COM port of your PC. Press the “Open” button. A message “Communication COM# is opened” appears on the screen. If not, check the COM port settings of your PC and try again.

The input field “Refresh rate (s)” allows changing the screen refresh rate used in the motion portal. Allowed values range from 0.1 s to 10 s. This setting can be changed only when the communication is closed.

Press “Back” button, which gets you back to the previous screen. Press the “Controller Address Setting” button and the following screen appears:
Select an address and press the “Set” button. When successful, a message appears on the screen.

It is recommended to note down the address of the controller somewhere. For example, use the stickers supplied with the SMC100CC.

Now disconnect this controller from your PC and connect the next one instead. Select a new, not yet allocated address and press the “Set” button again. Proceed the same with all other controllers.

Building the System

When the addresses of all controllers are set, you can build your system.

Pull out all cables from all controllers. Set the dip switches of the controller with the address number 1 as FIRST. Set the dip switches of the other controllers, except one, as OTHERS, and set the dip switches of one controller as LAST. When you have only two controllers, one has to be set as FIRST (the one with the address number 1), and the other one as LAST. See below graphic for illustration.

Connect the SMC100CC configured as FIRST to the RS-232-C port or to the USB port of your PC. Connect a RS-485 network cable to the RS-485 OUT of the FIRST controller and to the RS-485 IN of the next controller. Proceed the same with all other controllers. When done, you can check your system:

- The controller configured as FIRST should have the RS-232-C cable connected. It has the address number 1.
- All controllers configured as OTHERS should have one RS-485 network cable connected to the RS-485 IN and another one to the RS-485 OUT.
- The controller connected as LAST should have one RS-485 network cable connected to the RS-485 IN.

Connect your stages to the SMC100CC’s (MOTOR connector). Connect your SMC100CC’s to power.

The SMC100CC allows chaining power from one SMC100CC to another one using the SMC-PSC0.2 cable supplied with the controller. But the total power consumption of all stages connected to the same power supply should not exceed 80 W. The maximum power consumption of each Newport stage is listed in the Newport catalog and on the Newport website. In case of questions, contact Newport.
An example: The maximum power consumption of a VP-25XA is 48 W. The maximum power consumption of an LTA-HS is 6 W. So it is possible to connect one VP-25XA and up to 5 LTA-HS to the same power supply. But it is not possible to connect two VP-25XA to the same power supply.

When done, your configuration should look as follow:

Enable all controllers

Start the SMC100CC utility program SMC.EXE, establish communication, and press the Motion Portal button. The following screen appears:
Go to the tab “Controllers”. Press the "Scan" button to validate all addressable controllers.

When done, press the “Apply” button.
Configuring the Controller

Start the SMC100CC utility program SMC.EXE, establish communication, and go to the Configuration screen.

When using the SMC100CC with Newport ESP compatible stages (see label on the stage), press “Stage parameters download”. The following screen appears:

Start with the controller address 1. Press “Download”. When successful, after some seconds an according message appears on the screen and the status LED on the SMC100CC #1 changes to orange. Select the next available controller address and press “Download” again. Proceed the same with all other controllers.

When done, your system is configured and ready to use.

For testing, go back two screens, and press the button “Motion portal”. The main user screen comes available. It has eight tabs at the top. Go to the Tab “MOVE”, select controller address 1, and press the button “HOME”. Your stage moves to the home position and the color of the status LED on the SMC100CC changes to green. When done, enter in the field “Position 1” any allowed position of your stage and press “GO”. Your stage moves to the commanded absolute position and the current position gets indicated in the position field at the top of the screen. Select another controller address and do the same. Proceed the same with all other controllers used in your system.

When everything is ok, your system is working correctly and is ready to use.

Using the SMC100CC with non Newport ESP compatible stages or changing the default values:

When using the SMC100CC with non Newport ESP compatible stages, you need to enter the stage parameters manually in the screen “Stage parameters modification”. This screen gets accessed from the “Configuration” screen. In the “Stage parameter configuration” screen you can also change the configuration parameters stored in the controller. But it is not recommended doing this unless you are an experienced user. For further information about the meaning of the different parameters, please refer to the explanations at the corresponding two letter commands (see command names in brackets) in section 5.5.
The SMC-RC keypad allows basic use of the SMC100CC controller without a computer. It features a 16 characters position display and four push buttons for configuration, jogging, homing, and enabling/disabling motors. It can be also used in parallel to a computer control.

If not already done, carefully unpack and visually inspect the SMC100CC controller, the SMC-RC keypad, all stages and all accessories for any damage. Place all components on a flat and clean surface.

1. Connect the SMC-RC to the SMC100CC (KEYPAD connector).
2. Connect your stage to the SMC100CC (MOTOR connector).
3. Connect the SMC100CC to the SMC-PS80 (DC IN connector).
4. Connect the SMC-PS80 to power.

During the initialization, the SMC100CC controller checks if a SMC-RC keypad is connected. If so, it checks whether all buttons are open (not pressed). If not, an error message gets generated.

NOTE

The SMC100CC does not recognize an SMC-RC after the initialization. Also, disconnecting the SMC-RC from the controller and reconnecting without reinitializing the controller does not work.

To reinitialize the SMC100CC controller, temporarily disconnect from power and reconnect again, or send the RS command (see section 5.5).

When using the SMC100CC for the first time with a Newport ESP compatible stage (see blue label on the product) a message AUTOCONFIG ? YES gets displayed for about 5 seconds. Press the Exec. button to configure the SMC100CC to the connected stage. Once done, this message gets not displayed anymore during later initialization unless the SMC100CC recognizes a different Newport ESP compatible stage than the one it is configured to. This message gets also not displayed if the controller is already configured correctly using the SMC100CC software utility (see section 3).

After successful initialization, the controller is in the NOT REFERENCED state and the display displays +0.00000 HOM (for more details about the SMC100CC states, please refer to section 5.1). Press the Exec. button to home the stage. The stage starts moving to its home position. When done, the display shows +0.00000 JOG. The digital value indicates the current position of the stage. The default units for Newport positioners are millimeters for linear stages and actuators, and degrees for rotation stages.

Pressing the Exec. button again gets the controller to the JOGGING state and the display changes to +0.00000 DIS. The jog buttons “<”, “<< >>”, and “>” are now enabled. Pressing the “<” (jog left) or “>” (Jog right) button starts a motion at slow velocity and with slow acceleration. Releasing the button stops the motion. These slow speed motion are ideal for precise adjustments. Pressing the “<” (jog left) or “>” (Jog right) button and the “<< >>” (high speed) simultaneously starts a high speed motion. These high speed motion are ideal for coarse adjustments. The jog speed and jog acceleration settings are as follow:
High jog velocity: Equal to the default velocity (see value set in the software utility or with the VA command).

High jog acceleration: High jog velocity / 2s (means final velocity is reached after 2 seconds).

High jog deceleration: Equal to the default acceleration (see value set in the software utility or with the AC command).

Low jog velocity: Equal to the default velocity (see value set in the software utility or with the VA command) divided by 1000.

Low jog acceleration: Low jog velocity / 2s (means final velocity is reached after 2 seconds).

Low jog deceleration: Equal to the default acceleration (see value set in the software utility or with the AC command).

NOTE
Any jog motion always respects the software limits (see settings in the software utility or with the SL and SR commands). When approaching a software limit, the controller decelerates with the programmed acceleration even if the jog buttons are pressed.

Pressing the Exec. button when the three most right letters are DIS, gets the controller to the DISABLE state. In DISABLE state the motor is not energized and the control loop is open. But the encoder is still read and the current position gets updated. The DISABLE state can be used for instance for manual adjustments or to make sure that no energy goes to the motor. To go from DISABLE state to the JOGGING state, press the Exec. button again.

The buttons of the keypad can get disabled by the JD command.

NOTE
The keypad does not allow stopping any motion started from a computer (all buttons are disabled when the controller is in MOVING state). To take computer control when the controller is in JOGGING state the controller must first get to the READY state (change state from the software utility or by using the JD command).
5.0 Programming

5.1 State Diagram

For a safe and consistent operation, the SCM100CC uses 7 different operation states: Not referenced, Configuration, Homing, Ready, Disable, Jogging and Moving. In each state, only specific commands are accepted by the SCM100CC. Therefore, it is important to understand the state diagram below and which commands and actions cause transition between the different states. Also see section 5.5 for command/state information:

When connecting the SMC100CC to power, the controller initializes (see section 5.2). When the initialization is successful, the controller gets to the NOT REFERENCED state. From the NOT REFERENCED state, the controller can go to the CONFIGURATION state with the PW1 command. In CONFIGURATION stage, the SMC100CC allows changing all stage and motor configuration parameters like maximum motor current or travel limits. The PW0 command saves all changes to the controller’s memory and returns the controller back to the NOT REFERNCED state.

To execute any move commands (PA, PR), the controller must be in READY state. To get from the NOT REFERENCED state to the READY state, the positioner must be homed first with the OR command. During homing (OR command execution), the controller is in HOMING state. When the homing is successful, the controller automatically gets to the READY state. The process for homing, and which signals are looked for during homing, can be defined with the HT command.

In READY state the motor is energized and the control loop is closed (when control loop state is closed, SC1). During a move execution (PA/PR), the controller is in MOVING state and gets automatically back to the READY state when the move is completed successfully. A following error during a move changes the controller to DISABLE state. Other errors, for instance a loss of the encoder signals, may change the controller to the NOT REFERENCED state.

In DISABLE state the motor is not energized and the control loop is open. But the encoder is still read and the current position gets updated. The DISABLE state can be used for instance for manual adjustments or to make sure that no energy goes to the motor. To go from READY state to DISABLE state and vice versa, use the MM command.
In JOGGING state the controller allows computer independent motion from the SMC-RC keypad. The controller can get to the JOGGING state ONLY by pressing the Exec. button on the SMC-RC when the controller is in the READY or in the DISABLE state. To get from JOGGING state to READY state use the JD command.

To get from READY state or DISABLE state back to the NOT REFERENCED state, for instance to make some further parameter change in CONFIGURATION state, you need to reboot the controller with the RS command.

5.2 Initialization

When connecting the SMC100CC to power, the following initialization routine gets executed. The initialization lasts less than 5 s. For more information about system errors during initialization, refer to the TS command in section 5.5.
5.3 Command Syntax

The SMC100CC is a command driven controller. The general format of a command is a two letter ASCII character preceded and followed by parameters specific to the command:

Command format:

```
  nn AA xx
```

- **nn** — Optional or required controller address.
- **AA** — Command name.
- **xx** — Optional or required value or "?" to query current value.

Both, upper and lower case characters are accepted. Depending on the command, it can have an optional or required prefix (**nn**) for the controller address and/or a suffix (**xx**) value or a "?".

Blank spaces

Blanks are allowed and ignored in any position, including inside a numerical value. The following two commands are equivalent, but the first example might be confusing and uses more memory:

- \texttt{2P A1.43 6}
- \texttt{2PA1.436}

Decimal separator

A dot ("."), is used as decimal separator for all numerical values.

Command terminator

Commands are executed as the command terminator \texttt{CRLF} (carriage-return line-feed, ASCII 13 and ASCII 10) is received. The controller will analyze the received string. If the command is valid and its parameters are in the specified range, it will be executed. Otherwise it will memorize an error.

After the execution of the command, all remaining characters in the input string, if any, will be ignored. In particular, it is not possible to concatenate several commands on a single string from the PC to the SMC100.

Each command will handle properly the memorization of related errors that can be accessed with the TE command. Please refer to the command set in section 5.5 for details.

5.4 Command Execution Time

The SMC100CC controller interprets commands continuously as received. The typical execution time for a "tell position command" (nTP?) is about 10 ms for the first controller (controller address number 1) and about 16 ms for the other controllers. Here, command execution time means the time from sending the command until receive of the answer.

It is important to note that a move command, that may lasts for several seconds, will not suspend the controller from further command execution. So for an efficient process flow with many move commands it is recommended to use the PT command (get time for a relative move), and to query the controller status (TS command) or the current position (TP command) before any further motion command is sent. Alternative, the dedicated outputs "In Motion" and "Not Referenced" can be used for similar purposes. These will provide an even more timely accurate information of the controller state.
5.5 Command Set

This section describes the supported two-letter ASCII commands used to configure and operate the SMC100CC. The general command format is:

Command format:

`nn AA xx`

- **nn** — Optional or required controller address.
- **AA** — Command name.
- **xx** — Optional or required value or “?” to query current value.

Since multiple SMC100CC may be chained through the internal RS-485 Bus, each controller uses a predetermined address *(nn)*, and by decoding the address field of the incoming commands, it can determine if the command is intended for it. Some command though, can be passed without a controller address. In that case the command applies to all concerned controllers. For example: ST0 stops the motion on all controllers, 1ST0 stops the motion only on controller #1.

Most commands can be used to set a value (in that case the command name is followed by the value “xx”) or to query the current value (in that case the command name is followed by a “?”). When querying a value, the controller responds with the command it received followed by the queried value. For example, a 1VA10 sets the velocity of the controller #1 to 10 units/second. A 1VA? sends the response 1VA10.

Not every command can be executed in all states of the SMC100CC and some commands have different meaning in different states. It is therefore important to understand the state diagram of the controller, see section 5.1.
SMC100CC

Single-Axis Motion Controller/Driver for DC Motors

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get acceleration</td>
</tr>
<tr>
<td>BA</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get backlash compensation</td>
</tr>
<tr>
<td>BH</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get hysteresis compensation</td>
</tr>
<tr>
<td>DV</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get driver voltage</td>
</tr>
<tr>
<td>FD</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get low pass filter for Kd</td>
</tr>
<tr>
<td>FE</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get following error limit</td>
</tr>
<tr>
<td>FF</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get friction compensation</td>
</tr>
<tr>
<td>HT</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get HOME search type</td>
</tr>
<tr>
<td>ID</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get stage identifier</td>
</tr>
<tr>
<td>JD</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leave JOGGING state</td>
</tr>
<tr>
<td>JM</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enable/disable keypad</td>
</tr>
<tr>
<td>JR</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get jerk time</td>
</tr>
<tr>
<td>KD</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get derivative gain</td>
</tr>
<tr>
<td>KI</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get integral gain</td>
</tr>
<tr>
<td>KP</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get proportional gain</td>
</tr>
<tr>
<td>KV</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get velocity feed forward</td>
</tr>
<tr>
<td>MM</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enter/Leave DISABLE state</td>
</tr>
<tr>
<td>OH</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get HOME search velocity</td>
</tr>
<tr>
<td>OR</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Execute HOME search</td>
</tr>
<tr>
<td>OT</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get HOME search time-out</td>
</tr>
<tr>
<td>PA</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Move absolute</td>
</tr>
<tr>
<td>PR</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Move relative</td>
</tr>
<tr>
<td>PT</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get motion time for a relative move</td>
</tr>
<tr>
<td>PW</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enter/Leave CONFIGURATION state</td>
</tr>
<tr>
<td>QI</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get motor’s current limits</td>
</tr>
<tr>
<td>RA</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get analog input value</td>
</tr>
<tr>
<td>RB</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get TTL input value</td>
</tr>
<tr>
<td>RS</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reset controller</td>
</tr>
<tr>
<td>SA</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get controller’s RS-485 address</td>
</tr>
<tr>
<td>SB</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get TTL output value</td>
</tr>
<tr>
<td>SC</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get control loop state</td>
</tr>
<tr>
<td>SE</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Configure/Execute simultaneous started move</td>
</tr>
<tr>
<td>SL</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get negative software limit</td>
</tr>
<tr>
<td>SR</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get positive software limit</td>
</tr>
<tr>
<td>ST</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stop motion</td>
</tr>
<tr>
<td>SU</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get encoder increment value</td>
</tr>
<tr>
<td>TB</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get command error string</td>
</tr>
<tr>
<td>TE</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get last command error</td>
</tr>
<tr>
<td>TH</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get set-point position</td>
</tr>
<tr>
<td>TP</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get current position</td>
</tr>
<tr>
<td>TS</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get positioner error and controller state</td>
</tr>
<tr>
<td>VA</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get velocity</td>
</tr>
<tr>
<td>VE</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get controller revision information</td>
</tr>
<tr>
<td>ZT</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get all axis parameters</td>
</tr>
<tr>
<td>ZX</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set/Get SmartStage configuration</td>
</tr>
</tbody>
</table>
SMC100CC

Single-Axis Motion Controller/Driver for DC Motors

Motion: Corresponds to HOMING and MOVING state (for details see state diagram, section 5.1).

- Changes configuration parameters. Those changes will be stored in the controller’s memory with the PW1 command and remain available after switching off the controller.

- Changes working parameters only. Those changes will get lost when switching off the controller.

- Accepted command.

Blank: Not accepted command (will return an error).

Command: Command passed without preceding controller number applies to all controllers (e.g. MM0 disables all controllers).
SMC100CC

AC — Set/Get acceleration

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxACnn, or xxAC?

Parameters

Description

xx [int] — Controller address.

nn [float] — Acceleration value.

Range

xx — 1 to 31

nn — \(> 10^6 \) and \(< 10^{12} \)

Units

xx — None

nn — Preset units/s²

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the maximum acceleration value which can then be saved in the controller’s nonvolatile memory using the PW command. This is the maximum acceleration that can be applied to the mechanical system. It is also the default acceleration that will be used for all moves unless a lower value is set in DISABLE or READY state.

In DISABLE or READY state, this command sets the acceleration used for the following moves. Its value can be up to the programmed value in CONFIGURATION state. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands

VA — Set velocity.

Example

1AC500 | Set controller #1 acceleration to 500 units/s².

1AC? | Controller returns 1AC500.
SMC100CC

BA — Set/Get backlash compensation

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxBAnn, or xxBA?

Parameters

Description

- **xx** [int] — Controller address.
- **nn** [float] — Backlash value.

Range

- **xx** — 1 to 31
- **nn** — >= 0 and < 1E12

Units

- **xx** — None
- **nn** — Preset units

Defaults

- **xx** Missing: Error B.
 Out of range: Error B.
 Floating point: Error A.
- **nn** Missing: Error C.
 Out of range: Error C.

Description

The BA command sets the backlash compensation value. This is the value that the controller moves the motor in addition to the commanded distance with any move that reverses the direction of motion without changing the current position value (TP command).

The BA command helps compensating for repeatable mechanical defects that appear when reversing the direction of motion, for instance mechanical play. The value 0 disables this function. This feature can be only used when the hysteresis compensation (BH) is disabled.

Returns

If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands

BH — Set hysteresis compensation.

Example

1BA0.005 | Set controller #1 backlash compensation to 0.005 units.
BH — Set/Get hysteresis compensation

Parameters

Description

- \(xx \) [int] — Controller address.
- \(nn \) [float] — Hysteresis value.

Range

- \(xx \) — 1 to 31
- \(nn \) — \(\geq 0 \) and \(< 10^{12} \)

Units

- \(xx \) — None
- \(nn \) — Preset units

Defaults

- \(xx \) — Missing: Error B. Out of range: Error B. Floating point: Error A.
- \(nn \) — Missing: Error C. Out of range: Error C.

Description

The BH command sets the hysteresis compensation value. When set to a value different than zero, the controller will issue for each move in the positive direction a move of the commanded distance plus the hysteresis compensation value, and then a second move of the hysteresis compensation value in the negative direction. This motion ensures that a final position gets always approached from the same direction and distance and helps compensating for non-repeatable mechanical defects like hysteresis or mechanical stiffness variations.

The value 0 disables this function. The BH command can not be used when the backlash compensation is enabled (BA command).

Returns

If the sign “?” takes place of \(nn \), this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands

- BA — Set backlash compensation.

Example

1BH0.015 | Set controller #1 backlash compensation to 0.015 units.
SMC100CC

DV — Set/Get driver voltage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: xxDVnn, or xxDV?

Parameters

Description:

xx [int] — Controller address.

nn [float] — Driver voltage value.

Range:

xx — 1 to 31

nn — ≥ 12 & ≤ 48

Units:

xx — None.

nn — Volts

Defaults:

xx — Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn — Missing: Error C.

Out of range: Error C.

Description:

This command sets the max. output voltage of the driver to the motor.

Returns:

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors:

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

J — Execution not allowed in DISABLE state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands:

QI — Set current limit.

Example:

1DV48 | Set controller #1 maximum output voltage to 48 V.
FD — Set/Get low pass filter cut off frequency for Kd

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxFDnn`, or `xxFD?`

Parameters

Description

- **xx** [int] — Controller address.
- **nn** [float] — Cut off frequency value.

Range

- **xx** — 1 to 31
- **nn** — > 10⁻⁶ and < 2000

Units

- **xx** — None.
- **nn** — Hertz

Defaults

- **xx** Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- **nn** Missing: Error C.
- Out of range: Error C.

Description

In CONFIGURATION state, this command sets the value for the low pass filter cut-off frequency which can than be saved in the controller’s non-volatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the low pass filter cut-off frequency. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands

- SC — Set closed loop state.

Example

`1FD1500` | *Set controller #1 Kd cut-off frequency to 1500 Hz.*
SMC100CC

FE — Set/Get following error limit

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxFE nn`, or `xxFE?`

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>nn [float]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controller address.</td>
<td>Following error limit value.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>xx</th>
<th>nn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 to 31</td>
<td>> 10^6 and < 10^12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>xx</th>
<th>nn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None.</td>
<td>Preset units.</td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>xx</th>
<th>Missing: Error B.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td>Floating point: Error A.</td>
</tr>
<tr>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description

In CONFIGURATION state, this command sets the value for the maximum allowed following error which can than be saved in the controller’s non-volatile memory using the PW command. It is also the default value that will be used for the closed-loop control unless a different value is set in DISABLE state.

The following error is the most important parameter to control motion. It is the difference between the set point (or theoretical) position and the current (or encoder) position. When the current following error exceeds the maximum allowed value, a following error is issued and the controller is set to DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the maximum allowed following error. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

SC — Set closed loop state.

Example

1FE0.015 | Set controller #1 following error limit to 0.015 units.
SMC100CC
FF — Set/Get friction compensation

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
`xxFFnn`, or `xxFF?`

Parameters

- **Description**
 - `xx` [int] — Controller address.
 - `nn` [float] — Friction compensation value.

- **Range**
 - `xx` — 1 to 31
 - `nn` — ≥ 0 and < DV

- **Units**
 - `xx` — None.
 - `nn` — Volt * second/preset units.

- **Defaults**
 - `xx` Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - `nn` Missing: Error C.
 - Out of range: Error C.

Description
In CONFIGURATION state, this command sets the value for the friction compensation which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used for any move unless a different value is set in DISABLE state.

The FF command helps minimizing the following error with systems that have significant friction. The value for the friction compensation is the voltage that gets added to the output voltage whenever the set point (or theoretical) velocity is different from zero. The sign of this voltage is the same as the sign of the set point velocity.

In DISABLE state, this command allows setting a new working parameter for the friction compensation. This value is not saved in the controller’s memory and will be lost after reboot.

Returns
If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands
SC — Set closed loop state.

Example
`1FF0.15` | Set controller #1 friction compensation to 0.15 V * s/units.
HT — Set/Get HOME search type

Syntax xxHTnn, or xxHT?

Parameters

Description
- xx [int] — Controller address.
- nn [int] — Home type value.

Range
- xx — 1 to 31
- nn —
 - 0 use MZ switch and encoder Index.
 - 1 use current position as HOME.
 - 2 use MZ switch only.
 - 3 use EoR- switch and encoder Index.
 - 4 use EoR- switch only.

Units
- xx — None.
- nn — None.

Defaults
- xx Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
- nn Missing: Error C.
 - Out of range: Error C.

Description
This command sets the type of HOME search used with the OR command.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands
- OR — Execute HOME search.

Example
1HT0 | Set controller #1 HOME sequence to use MZ and encoder index.
SMC100CC

ID — Set/Get stage identifier

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
</table>

Syntax

xxIDnn, or xxID?

Parameters

Description

xx [int] — Controller address.
nn [float] — Stage model number.

Range

xx — 1 to 31
nn — 1 to 31 ASCII characters.

Units

xx — None
nn — None

Defaults

xx — Missing: Error B.
Out of range: Error B.
Floating point: Error A.
nn — Missing: Error C.
Out of range: Error C.

Description

The ID? command return the stage identifier. When used with Newport ESP compatible stages (see blue label on the product), this is the identical to the Newport product name. In CONFIGURATION mode, this command allows changing the stage identifier. However, customer should never do this when the ESP stage configuration is enabled (ZX3).

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

ZX — Set SmartStage configuration.

Example

1ID? | Get stage identifier for controller #1.
 | Controller returns URS100CC.
Syntax xxJD

Parameters

Description xx [int] — Controller address.

Range xx — 1 to 31

Units xx — None

Defaults xx

Missing: Error B.

Out of range: Error B.

Floating point: Error A.

Description In JOGGING STATE, when no jog buttons are pressed and the stage velocity is 0 the xxJD command sets the controller's state to READY.

Errors A — Unknown message code or floating point controller address.

B — Controller address not correct.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

I — Execution not allowed in CONFIGURATION state.

J — Execution not allowed in DISABLE state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands JM — Enable/Disable keypad.

Example 1JD | Controller #1 leaves jogging state.
SMC100CC

JM — Enable/Disable keypad

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Syntax xxJMnn, or xxJM?

Parameters

Description
- **xx** [int] — Controller address.
- **nn** [float] — Jog state.

Range
- **xx** — 1 to 31
- **nn** — 0 or 1

Units
- **xx** — None
- **nn** — None

Defaults
- **xx** Missing: Error B. Out of range: Error B. Floating point: Error A.
- **nn** Missing: Error B. Out of range: Error A.

Description
The JM1 command enables the SMC-RC keypad buttons (default setting). The JM0 command disables the SMC-RC keypad buttons. Sending the JM command when the controller is in DISABLE or READY state only temporarily applies the setting. With the next boot of the controller the default setting will get applied again. Whereas sending the JM command when the controller is in CONFIGURATION state saves the setting in the controller’s non-volatile memory).

Returns
If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors
- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **L** — Execution not allowed in HOMING state.
- **M** — Execution not allowed in MOVING state.

Rel. Commands
- JD — Leave JOGGING state.

Example
- 1JM1 | Enable keypad for controller #1.
SMC100CC

JR — Set/Get jerk time

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
xxJRnn, or xxJR?

Parameters

Description
- **xx** [int] — Controller address.
- **nn** [float] — Jerk time value.

Range
- **xx** — 1 to 31
- **nn** — > 0.001 and < 10^{12}

Units
- **xx** — None.
- **nn** — Seconds.

Defaults
- **xx** Missing: Error B.
 Out of range: Error B.
 Floating point: Error A.
- **nn** Missing: Error C.
 Out of range: Error C.

Description
In CONFIGURATION state, this command sets the value for the maximum jerk time which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE or READY state.

Jerk is the derivative of acceleration. The jerk time defines the time to reach the needed acceleration. A longer jerk time reduces stress to the mechanics and smoothes motion.

In DISABLE or READY state, this command allows setting a new working parameter for the maximum jerk time. This value is not saved in the controller’s memory and will be lost after reboot.

Returns
If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution impossible (axis in movement).
- H — Execution not allowed in NOT REFERENCED state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands
AC — Set positioner acceleration.

Example
1JR0.05 | Set controller #1 jerk time to 0.05 seconds.
KD — Set/Get derivative gain

Syntax
xKDnn, or xxKD?

Parameters

Description
- xx [int] — Controller address.
- nn [float] — Derivative gain value.

Range
- xx — 1 to 31
- nn — ≥ 0 and < 10^{12}

Units
- xx — None.
- nn — Volt * second/preset unit.

Defaults
- xx — Missing: Error B. Out of range: Error B. Floating point: Error A.
- nn — Missing: Error C. Out of range: Error C.

Description
In CONFIGURATION state, this command sets the derivative gain of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands
- SC — Set closed loop state.
- KI — Set integral gain.
- KP — Set proportional gain.
- KV — Set velocity feed forward.

Example
1KD0.015 | Set controller #1 derivative gain to 0.015.
SMC100CC

KI — Set/Get integral gain

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>✔</td>
<td>✔</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax

xxKInn, or xxKI?

Parameters

Description

xx [int] — Controller address.

nn [float] — Integral gain value.

Range

xx — 1 to 31

nn — ≥ 0 and < 10^12

Units

xx — None.

nn — Volt * preset unit/second.

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the integral gain of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign "?" takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands

SC — Set closed loop state.

KD — Set derivative gain.

KP — Set proportional gain.

KV — Set velocity feed forward.

Example

1KI0.015 | Set controller #1 integral gain to 0.015.
KP — Set/Get proportional gain

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>■</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax
xxKPnn, or xxKP?

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] — Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float] — Proportional gain value.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>xx — 1 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn — ≥ 0 and < 10^{12}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>xx — None.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn — Volt/preset unit</td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>xx</th>
<th>Missing: Error B.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td>Floating point: Error A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nn</th>
<th>Missing: Error C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description

In CONFIGURATION state, this command sets the proportional gain of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

SC — Set closed loop state.
KD — Set derivative gain.
KI — Set integral gain.
KV — Set velocity feed forward.

Example

1KP0.015 | *Set controller #1 proportional gain to 0.015.*
Syntax \textit{xxKVnn}, or \textit{xxKV}?

Parameters

\begin{itemize}
 \item \textbf{Description} \textit{xx} [int] — Controller address.
 \item \textit{nn} [float] — Velocity feed forward value.
 \item \textbf{Range} \textit{xx} — 1 to 31
 \item \textit{nn} — \(\geq 0\) and \(< 10^{12}\)
 \item \textbf{Units} \textit{xx} — None.
 \item \textit{nn} — Volt * second/preset unit
 \item \textbf{Defaults} \textit{xx} — Missing: Error B.
 \item Out of range: Error B.
 \item Floating point: Error A.
 \item \textit{nn} — Missing: Error C.
 \item Out of range: Error C.
\end{itemize}

Description

In CONFIGURATION state, this command sets the velocity feed forward of the PID control loop which can then be saved in the controller’s non-volatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of \textit{nn}, this command returns the current programmed value.

Errors

\begin{itemize}
 \item \textbf{A} — Unknown message code or floating point controller address.
 \item \textbf{B} — Controller address not correct.
 \item \textbf{C} — Parameter missing or out of range.
 \item \textbf{D} — Execution not allowed.
 \item \textbf{H} — Execution not allowed in NOT REFERENCED state.
 \item \textbf{K} — Execution not allowed in READY state.
 \item \textbf{L} — Execution not allowed in HOMING state.
 \item \textbf{M} — Execution not allowed in MOVING state.
\end{itemize}

Rel. Commands

\begin{itemize}
 \item \textbf{SC} — Set closed loop state.
 \item \textbf{KD} — Set derivative gain.
 \item \textbf{KI} — Set integral gain.
 \item \textbf{KP} — Set proportional gain.
\end{itemize}

Example

1KV0.015 | \textit{Set controller \#1 velocity feed forward to 0.015.}
MM — Enter/Leave DISABLE state

Usage

<table>
<thead>
<tr>
<th></th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

\[xx\]MMnn, or xxMM?

Parameters

- **Description**
 - xx [int] — Controller address.
 - nn [float] — Velocity feed forward value.

- **Range**
 - xx — 0 to 31
 - nn — 0 changes state from READY to DISABLE.
 - 1 changes state from DISABLE to READY.

- **Units**
 - xx — None.
 - nn — None.

- **Defaults**
 - xx Missing: Change to 0.
 - Out of range: Error B.
 - Floating point: Error A.
 - nn Missing: Error C.
 - Out of range: Error C.

Description

When the MM command is sent without preceding controller number or the controller number is 0, the MM command gets executed on all controllers.

MM0 changes the controller’s state from READY to DISABLE. In DISABLE state the control loop is open and the motor is not energized. The encoder, though, is still read and the current position gets updated.

MM1 changes the controller’s state from DISABLE to READY. The controller’s set point position is set equal to its current position and the control loop gets closed (depending on the closed-loop state). The residual following error gets cleared from the buffer and the motor gets energized.

Returns

If the sign “?” takes place of nn, this command returns the current state.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.
- **L** — Execution not allowed in HOMING state.
- **M** — Execution not allowed in MOVING state.

Rel. Commands

- **PW** — Enter/leave CONFIGURATION state.

Example

MM0 | All controllers go to DISABLE state.
SMC100CC

OH — Set/Get HOME search velocity

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxOHnn`, or `xxOH?`

Parameters

Description

- `xx` [int] — Controller address.
- `nn` [float] — HOME high velocity.

Range

- `xx` — 1 to 31
- `nn` — \(> 10^6 \) and \(< 10^{12} \)

Units

- `xx` — None.
- `nn` — Preset units/s.

Defaults

- `xx` Missing: Error B.
 Out of range: Error B.
 Floating point: Error A.
- `nn` Missing: Error C.
 Out of range: Error C.

Description

This command sets the maximum velocity used by the controller for the HOME search.

Returns

If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands

OR — Execute HOME search.
OT — Set HOME search time-out.

Example

`1OH50` | Set controller #1 HOME search velocity to 50 units/s.
OR — Execute HOME search

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxOR

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31

Units

xx — None.

Defaults

xx

Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn

Missing: Error C.

Out of range: Error C.

Description

This command starts the execution of the HOME search as defined by the HT command.

When in NOT REFERENCED state, for instance after system start, any positioner must first get homed with the OR command before further motion commands can get executed.

The OR command gets accepted only in NOT REFERENCED state and only with no present hardware errors, except for end-of-run maybe. Refer to the TS command to get more information on the possible hardware errors.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

E — home sequence already started.

I — Execution not allowed in CONFIGURATION state.

J — Execution not allowed in DISABLE state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands

HT — Set HOME search type.

OH — Set HOME search velocity.

OT — Set HOME search time-out.

Example

1OR | Execute HOME search with controller #1.
OT — Set/Get HOME search time-out

Syntax xxOTnn, or xxOT?

Parameters

Description

xx [int] — Controller address.
nn [float] — HOME time-out.

Range

xx — 1 to 31
nn — > 1 and < 10³

Units

xx — None.
nn — Seconds

Defaults

xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.
nn Missing: Error C.
Out of range: Error C.

Description

This command sets the time-out value for the HOME search. When the HOME search does not finish successfully before this time elapses, the HOME search will be aborted and an error gets recorded.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

HT — Set HOME search type.
OH — Set HOME search velocity.
OR — Execute HOME search.

Example 1OT2.2 | Set controller #1 HOME time-out to 2.2 seconds.
SMC100CC

PA — Move absolute

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
</table>

Syntax

xxPAnn, or xxPA?

Parameters

Description

- xx [int] — Controller address.
- nn [float] — New target position.

Range

- xx — 1 to 31
- nn — > SL and < SR

Units

- xx — None.
- nn — Preset units.

Defaults

- xx Missing: Error B.
 Out of range: Error B.
 Floating point: Error A.
- nn Missing: Error C.
 Out of range: Error C.

Description

The PA command initiates an absolute move. When received, the positioner will move, with the predefined acceleration and velocity, to the new target position specified by nn.

The PA command gets only accepted in READY state, AND when the new target position is higher or equal to the negative software limit (SL), AND lower or equal to the positive software limit (SR).

To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

Returns

If the sign “?” takes place of nn, this command returns the target position value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- G — Target position out of limits.
- H — Execution not allowed in NOT REFERENCED state.
- I — Execution not allowed in CONFIGURATION state.
- J — Execution not allowed in DISABLE state.

Rel. Commands

- PR — Move relative.
- TH — Get set-point position.
- TP — Get current position.
- SU — Set encoder increment value.

Example

1PA2.2 | Move positioner on controller #1 to absolute position 2.2 units.
SMC100CC

PR — Move relative

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>■</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxPRnn, or xxPR?

Parameters

Description

xx [int] — Controller address.

nn [float] — Displacement.

Range

xx — 1 to 31
nn — > SL and < SR

Units

xx — None.

nn — Preset units.

Defaults

xx Missings: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missings: Error C.

Out of range: Error C.

Description

The PR command initiates a relative move. When received, the positioner will move, with the predefined acceleration and velocity, to a new target position nn units away from the current target position.

The PR command gets only accepted in READY state, AND when the distance of the positioner to the end of runs is larger than the commanded displacement.

To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

Returns

If the sign “?” takes place of nn, this command returns the target position value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

G — Displacement out of limits.

H — Execution not allowed in NOT REFERENCED state.

I — Execution not allowed in CONFIGURATION state.

J — Execution not allowed in DISABLE state.

Rel. Commands

PA — Move absolute.

TH — Get set-point position.

TP — Get current position.

SU — Set encoder increment value.

Example

1PR2.2 | Move positioner on controller #1 to a new position 2.2 units away from the current target position.
SMC100CC

PT — Get motion time for a relative move

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>

Syntax

```
xxPTnn
```

Parameters

Description

- **xx** [int] — Controller address.
- **nn** [float] — Displacement.

Range

- **xx** — 1 to 31
- **nn** — > 10^6 and $< 10^{12}$

Units

- **xx** — None.
- **nn** — Preset units.

Defaults

- **xx** Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
- **nn** Missing: Error C.
 - Out of range: Error C.

Description

The PT commands help evaluating move times for an efficient program flow.

When receiving the PT command, the controller returns the time, in seconds, necessary to execute a relative move of the displacement nn with the current working parameters (velocity, acceleration, etc.). The controller does not execute any motion.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.

Rel. Commands

- **PA** — Move absolute.
- **PR** — Move relative.
- **TH** — Get set-point position.
- **TP** — Get current position.
- **SU** — Set encoder increment value.

Example

```
1PT2.2 | Get time to move positioner on controller #1 by 2.2 units.
```

Controller returns: 1PT0.25, means 0.25 seconds.
SMC100CC

PW — Enter/Leave CONFIGURATION state

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
</table>

Syntax

`xxPWnn`, or `xxPW?`

Parameters

- **Description**
 - `xx` [int] — Controller address.
 - `nn` [float] — Velocity feed forward value.

- **Range**
 - `xx` — 1 to 31
 - `nn` — 1: Go from NOT REFERENCED state to CONFIGURATION state.
 - 0: Go from CONFIGURATION state to NOT REFERENCED state.

- **Units**
 - `xx` — None.
 - `nn` — None.

- **Defaults**
 - `xx` Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - `nn` Missing: Error C.
 - Out of range: Error C.

- **Description**
 - PW1 changes the controller’s state from NOT REFERENCED to CONFIGURATION. In Configuration state all parameter settings are saved in the controller’s memory and remain available after switching off the controller. In addition, some settings are only possible in CONFIGURATION state (e.g. set drive voltage, set Backlash compensation, etc.).

 PW0 checks all stage parameters, and if they are acceptable, saves them in the flash memory of the controller. After that, it changes the controller’s state from CONFIGURATION to NOT REFERENCED.

 The execution of a PW0 command may take up to 10 seconds. During that time the controller will not respond to any other command.

- **Returns**
 - If the sign “?” takes place of `nn`, this command returns the current state.

- **Errors**
 - A — Unknown message code or floating point controller address.
 - B — Controller address not correct.
 - C — Parameter missing or out of range.
 - D — Execution not allowed.
 - J — Execution not allowed in DISABLE state.
 - K — Execution not allowed in READY state.
 - L — Execution not allowed in HOMING state.
 - M — Execution not allowed in MOVING state.

- **Rel. Commands**
 - MM — Enter/Leave DISABLE state.

- **Example**
 - `1PW1` | *Changes controller #1 to CONFIGURATION state.*
SMC100CC

QI — Set/Get motor’s current limits

Usage

Not Ref. Config. Disable Ready Motion Jogging

Syntax

xxQILnn, xxQIRnn, xxQITnn, xxQIL?, xxQIR?, or xxQIT?

Parameters

Description

xx [int] — Controller address.
Lmm [float] — Motor’s peak current limit.
Rnn [float] — Motor’s rms current limit.
Tpp [float] — Motor’s rms current averaging time.

Range

xx — 1 to 31
mm — ≥ 0.05 and ≤ 3.0
nn — ≥ 0.05 and ≤ 1.5 and ≤ mm
pp — > 0.01 and ≤ 100

Units

xx — None.
mm — Amperes.
nn — Amperes.
pp — Seconds.

Defaults

xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.

mm Missing: Error C.
nn Missing: Error C.
pp Missing: Error C.

Out of range: Error C.

Description

QIL: Sets the controller’s maximum or peak output current limit to the motor. When the controller detects a higher current than the peak current limit, it will generate a hardware error and a fault will be recorded.

QIR: Sets the controller’s rms output current limit to the motor. The rms current limit must be lower than the peak current limit. When the controller’s output current exceeds the rms current limit, it will generate a hardware error and a fault will be recorded.

QIT: Sets the controller’s averaging period for rms current calculation. In general, the QIT command defines for how long time the actual motor current is allowed to exceed the rms output current limit.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

DV — Set driver input voltage.

Example

1QIL0.75 | Set controller #1 current limit to 0.75 A.
1QIR0.25 | Set controller #1 rms current limit to 0.25 A.
1QIT2.5 | Set controller #1 rms averaging period to 2.5 s.
RA — Get analog input value

Syntax
`xxRA`

Parameters

Description
`xx [int]`
Controller address.

Range
`xx`
1 to 31

Units
`xx`
None.

Defaults
`xx`
Missing: Error B.
Out of range: Error B.
Floating point: Error A.

Description
The RA command returns the value of the ±10 volts analog input. The converter is a ±7 bits analog to digital converter with ±0.15 volts of maximum offset and 5% full scale linearity. The resolution is 0.078125 volts.

Errors

A
Unknown message code or floating point controller address.

B
Controller address not correct.

D
Execution not allowed.

H
Execution not allowed in NOT REFERENCED state.

I
Execution not allowed in CONFIGURATION state.

Rel. Commands

SB
Get TTL inputs.

Example

`1RA | Get controller axis #1 analog input.`

`1 Controller returns: 1RA7.8125, means 7.8125 V.`
Syntax xxRB

Parameters

Description xx [int] — Controller address.

Range xx — 1 to 31

Units xx — None.

Defaults xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

Description The RB command returns the value of the TTL inputs. The returned decimal number represents the binary word made of all 4 inputs, where bit 0 is input 1, bit 1 is input 2, bit 2 is input 3, and bit 3 is input 4.

The TTL input value is 1 when the corresponding voltage on the pin is larger than 2.4 volts, and it is 0 when the corresponding voltage is below 0.8 volt. When the voltage is between these two values, the result is unreliable and can be 1 or 0.

Errors A — Unknown message code or floating point controller address.

B — Controller address not correct.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

I — Execution not allowed in CONFIGURATION state.

Rel. Commands RA — Get analog input value.

Example 1RB | Get TTL input value for controller #1.

| Controller returns: 1RB5, means input 0 and 2 are high, all others are low.
SMC100CC

RS — Reset controller

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax

xxRS

Parameters

Description xx [int] — Controller address.
Range xx — 1 to 31
Units xx — None.
Defaults xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.

Description

The RS command issues a hardware reset of the controller, equivalent to a power-up.

To go from DISABLE or READY state to CONFIGURATION state, it is also needed to first reset the controller with the RS command, and then to change the controller’s state with the PW1 command from NOT REFERENCED to CONFIGURATION.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
I — Execution not allowed in CONFIGURATION state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Example

1RS | Reset controller #1.
SMC100CC

SA — Set/Get controller’s RS-485 address

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax
xxSAnn, or xxSA?

Parameters

Description
xx [int] — Axis number.
nn [int] — Controller’s axis number.

Range
xx — 1
nn — 2 to 31

Units
xx — None.
nn — None.

Defaults
xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.
nn Missing: Error C.
Out of range: Error C.

Description
The SA command sets the controller’s RS-485 address. This address is ONLY used when the controller is configured for RS-485 communication.

The SA command can only be sent to a controller configured for RS-232-C communication. In this configuration, the controller’s address is 1. Only one controller can be configured for RS-232-C communication.

Newport recommends using the supplied utility software for all controller configurations. The SA command is of practical use only when not using this software.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Example
1SA3 | Set controller’s RS-485 address to 3.
SMC100CC

SB — Set/Get TTL output value

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

Syntax

\[xxSBnn \], or \[xxSB? \]

Parameters

Description

\[xx \ [int] \] — Controller address.

\[nn \ [int] \] — TTL output value.

Range

\[xx \] — 1 to 31

\[nn \] — 0 to 15

Units

\[xx \] — None.

\[nn \] — None.

Defaults

\[xx \] Missing: Error B.

Out of range: Error B.

Floating point: Error A.

\[nn \] Missing: Error C.

Out of range: Error C.

Description

The SB command sets the value of the TTL outputs. The decimal number \[nn \] represents thereby the binary word made of all 4 outputs, where bit 0 is output 1, bit 1 is output 2, bit 2 is output 3, and bit 3 is output 4.

A 1 closes the open collector output transistor of the output. A 0 blocks the open collector output transistor of the output.

Returns

If the sign “?” takes place of \[nn \], this command returns the current TTL outputs value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

I — Execution not allowed in CONFIGURATION state.

Rel. Commands

RB — Get TTL input value.

Example

1SB3 | Close controller #1 TTL outputs 1 & 2 and open outputs 3 & 4.
SMC100CC

SC — Set/Get control loop state

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
`xxSCnn`, or `xxSC?`

Parameters

Description
- `xx` [int] — Controller address.
- `nn` [int] — Closed loop state.

Range
- `xx` — 1 to 31
- `nn` —
 - 1: CLOSED loop control.
 - 0: OPEN loop control.

Units
- `xx` — None.
- `nn` — None.

Defaults
- `xx` Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- `nn` Missing: Error C.
- Out of range: Error C.

Description
SC1 sets the controller to CLOSED loop control. This is the default.
SC0 sets the controller to OPEN loop control. Open loop control might be useful for defining stage parameters like friction compensation or velocity feed forward.

Returns
If the sign “?” takes place of `nn`, this command returns the current state.

Errors
- A — Unknown message code or floating point controller address
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Rel. Commands
- KD — Set derivative gain.
- KI — Set integral gain.
- KP — Set proportional gain.
- KV — Set velocity feed forward.

Example
1SC1 | Set controller #1 to closed loop control.
SE — Configure/Execute simultaneous started move

Syntax
xxSEnn, or xxSE?, or SE

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>— Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float]</td>
<td>— New target position.</td>
</tr>
<tr>
<td>Range</td>
<td>xx</td>
<td>— 0 to 31</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>— > SL and < SR</td>
</tr>
<tr>
<td>Units</td>
<td>xx</td>
<td>— None.</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>— Preset units.</td>
</tr>
<tr>
<td>Defaults</td>
<td>xx</td>
<td>Missing: Change to 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating point: Error A.</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description
The SE command allows starting a move on different controllers at the same time.

The command xxSEnn sets a new target position for the controller nn. But different than the PA command, the move does not get executed immediately, but only after receipt of an SE command without preceding controller number and without following position value. When receiving the SE command, all controllers start a move to their new target position.

The xxSEnn command gets only accepted in READY state, AND when the new target position is higher or equal to the negative software limit (SL), AND lower or equal to the positive software limit (SR). To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

The SE command should not be confused with a synchronized move. With a synchronized move, all positioners start their motion simultaneously and have velocities, accelerations and jerk times which are limited to a rate which make all positioners start and complete their moves at the same time. The emphasis here is that they all start AND stop at the same time.

The SE command starts a move on all controllers at the same time, but each positioner moves with its individually defined velocity and acceleration. So naturally, the different positioners don’t complete their motion at the same time.

Returns
If the sign “?” takes place of nn, this command returns the target position value set by the SE command, which is not necessarily the same as the target position set by the PA command.

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
I — Execution not allowed in CONFIGURATION state.
J — Execution not allowed in DISABLE state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.
Rel. Commands

PR — Move relative.
TH — Get set-point position.
TP — Get current position.
SU — Set encoder increment value.

Example

1SE2.2 | Prepare controller #1 to move to absolute position 2.2 units.
2SE3.3 | Prepare controller #2 to move to absolute position 3.3 units.
SE | All controllers start their programmed move, if any.
SMC100CC

SL — Set/Get negative software limit

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax

xxSLnn, or xxSL?

Parameters

Description

xx [int] — Controller address.

nn [float] — Negative software limit.

Range

xx — 1 to 31

nn — > -10^12 and ≤ 0

Units

xx — None.

nn — Preset units.

Defaults

xx

Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn

Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the negative software limit which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE or READY state.

In DISABLE or READY state, this command allows setting a new working parameter for the negative software limit. It must be lower or equal to the set-point position. This value is not saved in the controller’s memory and will be lost after reboot.

The software limits are useful to limit the travel range of a positioner. There is no possibility to disable software limits. For an almost infinite motion, for instance with a rotation stage, set the lowest possible value, which is: -2 147 000 000 * “encoder increment value” (see SU command). For instance if the encoder increment value is 0.0005, this limit is -1 073 500.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands

SR — Set positive software limit.

Example

1SL-100 | Set controller #1 negative software limit to -100 units.
SMC100CC

SR — Set/Get positive software limit

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Syntax

xxSRnn, or xxSR?

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>— Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float]</td>
<td>— Positive software limit.</td>
</tr>
<tr>
<td>Range</td>
<td>xx</td>
<td>— 1 to 31</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>≥ 0 and < 1012</td>
</tr>
<tr>
<td>Units</td>
<td>xx</td>
<td>— None.</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>— Preset units.</td>
</tr>
<tr>
<td>Defaults</td>
<td>xx</td>
<td>Missing: Error B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating point: Error A.</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description

In CONFIGURATION state, this command sets the positive software limit which can then be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE or READY state.

In DISABLE or READY state, this command allows setting a new working parameter for the positive software limit. It must be larger or equal to the set-point position. This value is not saved in the controller’s memory and will be lost after reboot.

The software limits are useful to limit the travel range of a positioner. There is no possibility to disable software limits. For an almost infinite motion, for instance with a rotation stage, set the largest possible value, which is: 2 147 000 000 * “encoder increment value” (see SU command). For instance if the encoder increment value is 0.0005, this limit is 1 073 500.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

SL — Set negative software limit.

Example

1SR100 | Set controller #1 positive software positive to 100 units.
Syntax

```
[xx]ST
```

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>— Controller address.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>xx</th>
<th>— 0 to 31</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>xx</th>
<th>None.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>xx</th>
<th>Missing: Change to 0.</th>
</tr>
</thead>
</table>

Out of range: Error B.
Floating point: Error A.

Description

The ST command is a safety feature. It stops a move in progress by decelerating the positioner immediately with the acceleration defined by the AC command until it stops.

The `xxST` command with preceding controller address stops a move in progress on controller `xx`. The ST command without preceding controller address stops the moves on ALL controllers.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.

Example

```
ST | Stop moves on all controllers.
```
SMC100CC

SU — Set/Get encoder increment value

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
xSU\text{n}, or xSU?

Parameters

Description
- xx [int] — Controller address.
- nn [float] — Equivalent units to one encoder count.

Range
- xx — 1 to 31
- nn — \(> 10^6 \) and \(< 10^{12} \)

Units
- xx — None.
- nn — Units.

Defaults
- xx Missing: Error B.
 Out of range: Error B.
 Floating point: Error A.
- nn Missing: Error C.
 Out of range: Error C.

Description
The SU command sets the value for one encoder count. It defines also the system of units for all other parameters like travel limits, velocities, accelerations, etc. Therefore, it is the first parameter to be defined for any positioner.

Example: For a positioner with an encoder resolution of 1 µm, the command xxSU0.001 sets 1 encoder count = 1 µm = 0.001 unit or 1 unit = 1 mm.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.

Example
1SU7.5e-6 | *Set controller #1 encoder increment to 7.5 * 10^6 units.*
TB — Get command error string

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxTBnn`

Parameters

Description

`xx` [int] — Controller address.

Range

`xx` — 1 to 31

`nn` [char] — Error code (refer to TE command).

Units

`xx` — None.

Defaults

- Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.

```
nn
```

- Missing: Returns explanation of current error.
- Out of range: Error C.

Description

The TB command returns a string that explains the meaning of the error code `nn` (see TE command for complete list).

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.

Rel. Commands

TE — Get error code.

Example

`1TB@` | Get explanation to error code @.

`Controller returns: 1TB@ No error, @ means no error.`
SMC100CC

TE — Get last command error

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

Description

The TE command returns the currently memorized error. When a command is not executable, it memorizes an error. This error can be read with the TE command. After the execution of a TE command, the error buffer gets erased and another TE command will return @, means no error. When a new command error is generated before the previous command error is read, the new command error will overwrite the current memorized error.

For a safe program flow it is recommended to always query the command error after each command execution.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **D** — Execution not allowed.

Rel. Commands

- **TB** — Get error string.

Example

1TE | Get last error memorized on controller #1.

| Controller returns: 1TE@, means no error. |

List of errors and corresponding strings (see TB command):

- **@** — No error.
- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Command not allowed.
- **E** — Home sequence already started.
- **F** — ESP stage name unknown.
- **G** — Displacement out of limits.
- **H** — Command not allowed in NOT REFERENCED state.
- **I** — Command not allowed in CONFIGURATION state.
- **J** — Command not allowed in DISABLE state.
- **K** — Command not allowed in READY state.
- **L** — Command not allowed in HOMING state.
- **M** — Command not allowed in MOVING state.
- **S** — Communication Time Out.
- **U** — Error during EEPROM access.
Syntax

`xxTH`

Parameters

Description
`xx` [int] — Controller address.

Range
`xx` — 1 to 31

Units
`xx` — None.

Defaults
`xx`
- Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.

Description

The TH command returns the value of the set-point or theoretical position. This is the position where the positioner should be. In MOVING state, the set-point position changes according to the calculation of the motion profiler. In READY state, the set-point position is equal to the target position.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.

Rel. Commands

TP — Get current position.

Example

`1TH | Get set-point position of controller #1.
Controller returns: `1TH0`, set-point position = 0 units.`
TP — Get current position

Syntax

`xxTP`

Parameters

Description

`xx [int]` — Controller address.

Range

`xx` — 1 to 31

Units

`xx` — None.

Defaults

Missed: Error B.
Out of range: Error B.
Floating point: Error A.

Description

The TP command returns the value of the current position. This is the position where the positioner actually is according to his encoder value. In MOVING state, this value always changes. In READY state, this value should be equal or very close to the set-point and target position.

Together with the TS command, the TP command helps evaluating whether a motion is completed.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
D — Execution not allowed
H — Execution not allowed in NOT REFERENCED state.
I — Execution not allowed in CONFIGURATION state.

Rel. Commands

TH — Get set-point position.

Example

`1TP` | Get current position of controller #1.

| Controller returns: `1TP0`, actual position = 0 units.
TS — Get positioner error and controller state

Syntax

```
xxTS
```

Parameters

Description

```
xx [int] — Controller address.
```

Range

```
xx — 1 to 31
```

Units

```
xx — None.
n — None.
```

Defaults

```
xx
Missing: Error B.
Out of range: Error B.
Floating point: Error A.
```

Description

The TS command returns the positioner error and the current controller state.

Returns

The TS command returns six characters (1TSabcdef). The first four, a, b, c, and d, represent the positioner’s error in hexadecimal, and the last two, e, and f, represent the current controller’s state.

Because a positioner can have many errors at the same time, the positioner errors are represented by 4 hexadecimals (a, b, c, and d), where each hexadecimal represents 4 bits. Each of these bits represents one error:

- **Digit d, bit 0:** Negative end of run.
- **Digit d, bit 1:** Positive end of run.
- **Digit d, bit 2:** Peak current limit.
- **Digit d, bit 3:** rms current limit.
- **Digit c, bit 0:** Short circuit detection.
- **Digit c, bit 1:** Following error.
- **Digit c, bit 2:** Time out homing.
- **Digit c, bit 3:** Bad ESP stage.
- **Digit b, bit 0:** D.C. voltage too low.
- **Digit b, bit 1:** 80 W output power exceeded.

For converting the value of the hexadecimals (a, b, c, and d) to binary, use the following table:

| F | E | D | C | B | A | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | 0000 |

For instance, the error map 0013 represents the following error: Short circuit detection, Negative end of run, and positive end of run.
Controller states:
- **0A**: NOT REFERENCED from reset.
- **0B**: NOT REFERENCED from HOMING.
- **0C**: NOT REFERENCED from CONFIGURATION.
- **0D**: NOT REFERENCED from DISABLE.
- **0E**: NOT REFERENCED from READY.
- **0F**: NOT REFERENCED from MOVING.
- **10**: NOT REFERENCED ESP stage error.
- **11**: NOT REFERENCED from JOGGING.
- **14**: CONFIGURATION.
- **1E**: HOMING commanded from RS-232-C.
- **1F**: HOMING commanded by SMC-RC.
- **28**: MOVING.
- **32**: READY from HOMING.
- **33**: READY from MOVING.
- **34**: READY from DISABLE.
- **35**: READY from JOGGING.
- **3C**: DISABLE from READY.
- **3D**: DISABLE from MOVING.
- **3E**: DISABLE from JOGGING.
- **46**: JOGGING from READY.
- **47**: JOGGING from DISABLE.

Errors
- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.

Rel. Commands
- **TE** — Get last error.

Example
1TS | Get error and state of controller #1.
| Controller returns: 1TS00000A, no errors and NOT REFERENCED from reset.
SMC100CC

VA — Set/Get velocity

Syntax xxVAnn, or xxVA?

Parameters

Description xx [int] — Controller address.
nn [float] — Velocity value.

Range xx — 1 to 31
nn — > 10^6 and < 10^12

Units xx — None.
nn — Preset units/s.

Defaults xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.

nn Missing: Error C.
Out of range: Error C.

Description In CONFIGURATION state, this command sets the maximum velocity value which can than be saved in the controller’s nonvolatile memory using the PW command. This is the maximum velocity that can be applied to the mechanical system. It is also the default velocity that will be used for all moves unless a lower value is set in DISABLE or READY state.

In DISABLE or READY state, this command sets the velocity used for the following moves. Its value can be up to the programmed value in CONFIGURATION state. This value is not saved in the controller’s memory and will be lost after reboot.

Returns If the sign “?” takes place of nn, this command returns the current programmed value.

Errors A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands AC — Set positioner acceleration.

Example 1VA50 | Set controller #1 velocity to 50 units/s.
SMC100CC

VE — Get controller revision information

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

Description
xx [int] — Controller address.

Range
xx — 1 to 31

Units
xx — None.

Defaults
xx
Missing: Error B.
Out of range: Error B.
Floating point: Error A.

Description
This command returns the controller’s revision information.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.

Rel. Commands

TP — Get current position.

Example

1VE | Get controller #1 revision information.
 | Controller returns 1VE SMC - Controller-driver version 1.00r.
ZT — Get all configuration parameters

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax

xxZT

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31

Units

xx — None.

Defaults

xx

Missing: Error B.

Out of range: Error B.

Floating point: Error A.

Description

The ZT command returns the list of all current configuration parameters.

The ZT command allows a quick review of all current stage parameter and simplifies the configuration of non Newport stages, for instance by using Hyper Terminal file transfer.

Errors

A — Unknown message code or floating point controller address

B — Controller address not correct

Rel. Commands

TE — Get error code.

Example

1ZT | Get controller #1 configuration data.

```
1PW1
1AC320.000000
1BA0.000000
...
1VA80.000000
1Zx3
1PW1
```
SMC100CC

ZX — Set/Get ESP stage configuration

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Jogging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>■</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Syntax

xxZXnn, or xxZX?

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31
nn — 1 disable ESP stage check.
2 update ESP stage information.
3 enable ESP stage check.

Units

xx — None.
nn — None.

Defaults

xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.
nn Missing: Error C.
Out of range: Error C.

Description

The ZX command allows loading ESP stage data to the controller’s flash memory and enables/disables ESP stage check during power-up. ESP refers to Newport stages with an EEPROM (called ESP chip), that contains all stage information like motor type, travel limits, maximum velocity, maximum acceleration, etc.

The command ZX2 reads the parameters from the ESP stage and saves them to the controller’s flash memory. When using the SMC100CC controller with Newport ESP compatible stages this is the fastest way of doing the stage configuration. When not using the Newport supplied utility software, just send the ZX2 command, and you’re done.

The command ZX3 enables the ESP stage check. When enabled, the controller checks at each power-up whether the connected stage is the same as the one recorded in the controller flash memory. If not, it memorizes an error. The ESP stage check is recommended with all Newport ESP compatible stages.

The command ZX1 disables the ESP stage check. When disabled, the controller will not check the connected stage and the stage reference is set to UNKNOWN.

Returns

If the sign “?” takes place of nn, this command returns the current stage reference.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Example

1ZX? | Controller returns: 1ZXURS100CC, means URS100CC stage.
6.0 Connector Pinout

6.1 DC IN and DC OUT (Female Ø 2.1 x Ø 5.5 x 11 mm)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+12 VDC</td>
</tr>
<tr>
<td>2</td>
<td>Tx</td>
</tr>
<tr>
<td>3</td>
<td>Rx</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>+48 VDC</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
</tbody>
</table>

6.2 RS-232-C (Male Sub-D9)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shorted together with 4 and 6</td>
</tr>
<tr>
<td>2</td>
<td>TX</td>
</tr>
<tr>
<td>3</td>
<td>RX</td>
</tr>
<tr>
<td>4</td>
<td>Shorted together with 1 and 6</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Shorted together with 1 and 4</td>
</tr>
<tr>
<td>7</td>
<td>Shorted together with 8</td>
</tr>
<tr>
<td>8</td>
<td>Shorted together with 7</td>
</tr>
<tr>
<td>9</td>
<td>Not connected</td>
</tr>
</tbody>
</table>

6.3 RS-485 IN and RS-485 OUT (Female RJ11-6/6)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>RX-</td>
</tr>
<tr>
<td>3</td>
<td>RX-</td>
</tr>
<tr>
<td>4</td>
<td>TX-</td>
</tr>
<tr>
<td>5</td>
<td>TX+</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
</tbody>
</table>

6.4 Keypad (Female RJ9-4/4)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+12 VDC</td>
</tr>
<tr>
<td>2</td>
<td>Tx</td>
</tr>
<tr>
<td>3</td>
<td>Rx</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
</tbody>
</table>
6.5 GPIO (Female Sub-D15)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog in</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>OUT1 (Open collector)</td>
</tr>
<tr>
<td>4</td>
<td>OUT2 (Open collector)</td>
</tr>
<tr>
<td>5</td>
<td>OUT3 (Open collector)</td>
</tr>
<tr>
<td>6</td>
<td>OUT4 (Open collector)</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>IN1 (2.21 kΩ pull up to 5 V)</td>
</tr>
<tr>
<td>9</td>
<td>IN2 (2.21 kΩ pull up to 5 V)</td>
</tr>
<tr>
<td>10</td>
<td>IN3 (2.21 kΩ pull up to 5 V)</td>
</tr>
<tr>
<td>11</td>
<td>IN4 (2.21 kΩ pull up to 5 V)</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>In Motion (Open collector)</td>
</tr>
<tr>
<td>14</td>
<td>Not Referenced (Open collector)</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
</tr>
</tbody>
</table>

![GPIO Diagram](image)

6.6 Motor (Female Sub-D25)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>Not connected</td>
</tr>
<tr>
<td>3</td>
<td>Not connected</td>
</tr>
<tr>
<td>4</td>
<td>Not connected</td>
</tr>
<tr>
<td>5</td>
<td>MOTOR+</td>
</tr>
<tr>
<td>6</td>
<td>MOTOR+</td>
</tr>
<tr>
<td>7</td>
<td>MOTOR-</td>
</tr>
<tr>
<td>8</td>
<td>MOTOR-</td>
</tr>
<tr>
<td>9</td>
<td>Not connected</td>
</tr>
<tr>
<td>10</td>
<td>Not connected</td>
</tr>
<tr>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>ZM</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>VI</td>
</tr>
<tr>
<td>16</td>
<td>GVD</td>
</tr>
<tr>
<td>17</td>
<td>EoR+</td>
</tr>
<tr>
<td>18</td>
<td>EoR-</td>
</tr>
<tr>
<td>19</td>
<td>VA</td>
</tr>
<tr>
<td>20</td>
<td>VB</td>
</tr>
<tr>
<td>21</td>
<td>+5 V</td>
</tr>
<tr>
<td>22</td>
<td>GVD</td>
</tr>
<tr>
<td>23</td>
<td>/VA</td>
</tr>
<tr>
<td>24</td>
<td>/VB</td>
</tr>
<tr>
<td>25</td>
<td>/VI</td>
</tr>
</tbody>
</table>

![Motor Diagram](image)
7.0 Backlash Compensation

Target position is read by PA command.
Current position is read by TP command.
Set-point position is read by TH command.
Encoder resolution is set/read by the SU command.
Backlash is set/read by the BA command.

8.0 ESP Stages

ESP refers to Newport stages with an EEPROM (ESP chip), that contains all stage information like motor type, travel limits, maximum speeds, etc. The SMC100CC is capable reading this information from the stage and can save it to the controller’s flash memory. This minimizes the stage configuration time and possible errors during configuration. The SMC100CC can also be configured to confirm at each power-up that the connected stage is the same as the one recorded in the controller’s memory, which is another safety feature.
9.0 PID Control Loop Structure

```
Motor voltage

Saturation (V)

DF

Friction (V * s/unit)

KV

Feed forward (V * s/unit)

FF

KP

Proportional (V/unit)

KI

Integral (V * unit/s)

KD

Dérivative (V * s/unit)

FD

Low pass filter

Saturation 0.5 * DV/KI

* 1/z

* 1/Tb

* 1/z

Current position FROM ENCODER

Set point velocity FROM PROFILER

Set point position

Set point

FROM ENCODER

FROM PROFILER

Motor voltage

Saturation (V)

DF

Friction (V * s/unit)

KV

Feed forward (V * s/unit)

FF

KP

Proportional (V/unit)

KI

Integral (V * unit/s)

FD

Low pass filter

Saturation 0.5 * DV/KI

* 1/z

* 1/Tb

* 1/z

Current position FROM ENCODER

Set point velocity FROM PROFILER

Set point position

Set point
```
10.0 Maintenance and Service

10.1 Enclosure Cleaning

The SMC100CC Controller/Driver should only be cleaned with a lightly damped cloth or sponge with a soapy water solution. Do not use an acetone or alcohol solution, this will damage the finish of the enclosure.

10.2 Obtaining Service

The SMC100CC Controller/Driver contains no user serviceable parts. To obtain information regarding factory service, contact Newport Corporation or your Newport representative. Please have the following information available:

- Instrument model number (on front panel).
- Instrument serial number (on rear panel) or original order number.
- Description of the problem.

If the instrument is to be returned to Newport Corporation, you will be given a Return Number, which you should reference in your shipping documents.

Complete a copy of the Service Form as represented on the next page and include it with your shipment.
Service Form

Name: _______________________________ Return authorization #: _______________________
Company: ____________________________
Address: ______________________________
Country: ______________________________
P.O. Number: __________________________

Item(s) Being Returned:
Model #: _____________________________ Serial #: _______________________________
Description: __________________________

Reasons of return of goods (please list any specific problems): ___________________________
__
__
__
__
__
__
__
__
__
Visit Newport Online at: www.newport.com

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
(949) 253-1461 or (800) 222-6440 x31461
e-mail: sales@newport.com

Technical Support
(949) 253-1406 or (800) 222-6440 x31406
e-mail: tech@newport.com

Service, RMAs & Returns
(949) 253-1694 or (800) 222-6440 x31694
e-mail: istd.service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A
1, rue Jules Guesde – Bât. B
ZI Bois de l’Épine – BP189
91006 Evry Cedex
France

Sales & Technical Support
+33 (0)1.60.91.68.68
e-mail: france@newport-fr.com

Service & Returns
+33 (0)2.38.40.51.55