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ABSTRACT

We present a two-dimensional (2-D) fitting algorithm (Galfit, Version 3) with new capabilities to
study the structural components of galaxies and other astronomical objects in digital images. Our
technique improves on previous 2-D fitting algorithms by allowing for irregular, curved, logarithmic
and power-law spirals, ring and truncated shapes in otherwise traditional parametric functions like
the Sérsic, Moffat, King, Ferrer, etc., profiles. One can mix and match these new shape features
freely, with or without constraints, apply them to an arbitrary number of model components and
of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the
potential for extreme complexity, the meaning of the key parameters like the Sérsic index, effective
radius or luminosity remain intuitive and essentially unchanged. The new features have an interesting
potential for use to quantify the degree of asymmetry of galaxies, to quantify low surface brightness
tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy
subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the
uncertainties when decomposing galaxy subcomponents. We illustrate these new features by way of
several case studies that display various levels of complexity.
Subject headings: galaxies: bulges — galaxies: fundamental parameters — galaxies: structure —

techniques: image processing — techniques: photometric

1. INTRODUCTION

Images of astronomical objects store a wealth of infor-
mation that encodes the physical conditions and fossil
records of their evolution. Over the past decade, the
ability of optical/near-infrared telescopes to resolve ob-
jects improved by a factor of 10, and to detect faint
surface brightnesses by at least 2 orders of magnitude.
These advances now enable the study of highly intricate
details on subarcsecond scales (e.g., nuclear star clus-
ter, spiral structure, bars, inner ring, profile cusps, etc.),
and extremely faint outer regions of galaxies. Moreover,
new integral-field imaging capabilities blur the tradi-
tional boundary of obtaining, analyzing, and interpreting
imaging and spectroscopic data. Faced with the conver-
gence in volume, quality, and multiwavelength datasets
like never before, one of the main challenges toward mak-
ing full use of the investments is developing sophisticated
ways to extract information from the data to facilitate
new science.

1.1. Parametric and Non-Parametric Analysis

Analyzing astronomical images is challenging because
of the diversity in object sizes and shapes, and nowhere is
it more difficult than for galaxies. Since the early era of
photographic plates, one of the key methods for studying
the light distribution of galaxies is to model it by using
analytic functions—a technique known as parametric fit-
ting. This technique was first applied to galaxies by de
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Vaucouleurs (1948) who showed that the light distribu-
tion of elliptical galaxies tended to follow a power-law
form of exp

(

−r1/4
)

. Subsequently, one of the break-
throughs in our understanding of galaxy structure and
evolution came when Freeman (1970) showed that dy-
namically “hot” stars in galaxies make up spheroidal
bulges having a de Vaucouleurs light profile, whereas
“cold” stellar components make up the more flattened,
rotationally supported, exponential disk region.

From that simple beginning, parametric fitting has
been the mainstay for galaxy imaging studies, and ex-
panding into many applications whenever the science
calls for detailed and rigorous analysis. Among some of
the examples, past investigations delved into the struc-
tural parameters of disk galaxies (e.g., de Jong 1996),
the Tully-Fisher relation (e.g., Tully & Fisher 1977; Hinz
et al. 2003; Bedregal et al. 2006), the evolution of disky
galaxies (Simard et al. 2002; Ravindranath et al. 2004;
Barden et al. 2005), the cosmic evolution of galaxy mor-
phology (e.g., Lilly et al. 1998; Marleau & Simard 1998;
Hathi et al. 2009) in both groundbased surveys and Hub-
ble (Ultra-)Deep Fields (Williams et al. 1996; Beckwith
et al. 2006), the morphological transformation of galax-
ies in cluster environments (e.g., Dressler 1980), the fun-
damental plane of spheroids (Djorgovski & Davis 1987;
Dressler et al. 1987; Bender et al. 1992), the red se-
quence of galaxies (Bell et al. 2004b,a; Faber et al. 2007),
morphological dissimilarities between spheroidal galaxies
and ellipticals (Kormendy 1985, 1987), the central struc-
ture of early-type galaxies (Kormendy 1985; Lauer et al.
1995; Faber et al. 1997; Ferrarese et al. 2006b,a; Lauer
et al. 2007) and implications for the formation of mas-
sive black holes (Ravindranath et al. 2002; Kormendy &
Bender 2009), black hole vs. bulge relations (Kormendy
& Richstone 1995) and their evolution (Rix et al. 2001;
Peng et al. 2006a,b), the “extra light” due to gas dis-
sipation in galaxy centers (Kormendy 1999; Kormendy
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et al. 2009; Hopkins et al. 2008b,a), quasar host galax-
ies (e.g., Hutchings et al. 1984; McLeod & Rieke 1994;
McLure et al. 2000; Jahnke et al. 2004; Sánchez et al.
2004; Kim et al. 2008b), gravitational lensing of quasar
host galaxies (Rix et al. 2001; Peng et al. 2006b), and
the clustering of dark matter through weak lensing (e.g.,
Heymans et al. 2006, 2008).

Since the original development of galaxy fitting nearly
70 years ago, where the analysis was performed on one-
dimensional (1-D) surface brightness profiles (see also
Kormendy 1977; Burstein 1979; Boroson 1981; Kent
1985; Andredakis & Sanders 1994; MacArthur et al.
2003), newer techniques have emerged to directly ana-
lyze two-dimensional (2-D) images (e.g., Shaw & Gilmore
1989; McLeod & Rieke 1994; Byun & Freeman 1995;
de Jong 1996; Moriondo et al. 1998; Simard 1998; Rat-
natunga et al. 1999; Wadadekar et al. 1999; Simard et al.
2002; de Souza et al. 2004; Gadotti 2008). The benefit of
performing 2-D image analysis is to potentially make full
use of all spatial information and to properly account for
image smearing by the point-spread function (PSF).

Even though 2-D analysis can be quite sophisticated,
there are legitimate questions about whether it is more
beneficial than 1-D for profile analysis. Proponents of the
1-D technique are skeptical that perfect ellipsoid models
are suitable to use for galaxies that show isophotal twists,
or that are non-elliptical in shape. They note that not
only is 1-D analysis more appealing because it is more
straightforward to implement, the surface brightness pro-
files serve as visual confirmation about the reality of fit-
ting multiple component models.

However, beneath the apparent simplicity there are a
number of important subtleties to weigh. For instance,
the decision about how to extract 1-D profiles is often
not unique, nor are there strong reasons to prefer major
or minor axis profiles, or a profile along some arc traced
by spiral arms or isophote twists that result from the
superposition of multiple components oriented at differ-
ent angles. When symmetry is broken it is also unclear
that there is an optimal or unique way to extract a 1-D
profile, such as in irregular galaxies, overlapping galax-
ies, and galaxies with double nuclei. Another factor to
consider is that the process of extracting 1-D profiles re-
duces spatial information content: in many situations,
a bulge, disk, and bar can all have different axis ratios,
position angles (PAs), and profiles that help to break
model degeneracies, but this information is lost when the
data are collapsed into 1-D. Lastly, for compact galax-
ies, 1-D profile fitting cannot properly correct for image
smearing by the PSF because 1-D profile convolution is
not mathematically equivalent to convolution in a 2-D
image. While some of the above concerns also affect 2-
D analysis (i.e. irregular galaxies), most others benefit
from treatment using 2-D techniques. When it comes to
judging which models are more plausible, there are few
diagnostics more discerning than a moment’s glance at
2-D models and residual images; a good fit in 2-D always
means that 1-D profiles are necessarily a good fit. Propo-
nents of 2-D analysis therefore believe that the benefits
outweigh the drawbacks. Moreover, many drawbacks can
be mitigated by breaking free from axisymmetry in 2-D
analysis, which is the purpose of this study to show.

In the box of tools for morphology analysis, a compli-
mentary approach is non-parametric analysis. While we

do not use non-parametric methods in this study, it is
useful to understand the conceptual differences between
the two approaches. We thus provide a brief overview. In
contrast to function fitting, the non-parametric approach
does not involve deciding what functional form to use or
how many. One method is to decompose an image into
“shapelets” or ”wavelets” (e.g., Refregier 2003; Massey
et al. 2004), which is analogous to taking a 2-D Fourier
transform of an image using mathematically orthogonal
basis functions. The main conceptual difference with
parametric fitting is that the shapelet basis functions
do not represent physical subcomponents of a galaxy.
Moreover, the power spectrum of the basis functions is
quite useful for diagnosing the degree of galaxy distor-
tions. There are also other non-parametric techniques
(e.g., Abraham et al. 1994; Rudnick & Rix 1998; Con-
selice et al. 2000; Lotz et al. 2004). To measure concen-
tration non-parametrically, one way is to compare fluxes
within apertures of different radii; whereas to measure
asymmetry one can rotate an image by 180◦ and subtract
it from the original image and measure the residuals (e.g.,
Abraham et al. 1994; Conselice et al. 2000). Toward the
same goals, two studies, Abraham et al. (2003) and Lotz
et al. (2004), introduce the Gini index to measure the
concentration of a galaxy by comparing the relative dis-
tribution of pixel flux values within a certain area. Lotz
et al. (2004) also introduce a method for measuring asym-
metry through the M20 parameter, which is the second-
order moment of the brightest 20% of the a galaxy’s flux.

The application of non-parametric analysis has mostly
been to quantify galaxy mergers (e.g., Conselice et al.
2003; Lotz et al. 2008). These techniques are generally
much simpler to implement than parametric fitting and
have a strong virtue that no assumptions are made about
the galaxy profiles and shapes. The tradeoff is that the
techniques often do not deal with image smearing by the
PSF and different sensitivity thresholds between different
surveys. Consequently, one has to take particular care
to compare compact with extended objects, measured in
different apertures, or measured from images of different
surface brightness depths (Lisker 2008). One also should
guard against contamination by intervening galaxies or
stars because the techniques do not have a rigorous way
to separate overlapping objects. For separating objects,
extracting structural components of a galaxy, and ex-
trapolating galaxy wings well into the background noise,
there are few, if any, alternatives to parametric analysis
that are more rigorous.

When comparing the merits of non-parametric and
parametric analysis, the idea of ellipsoid models in para-
metric analysis is sometimes considered to be a weakness,
because galaxies, after all, are not perfect ellipses in pro-
jection. However, it is worth pointing out that the no-
tion of there being a global average size inherently implies
comparison against some kind of approximate shape. In-
deed, even in non-parametric techniques, to measure a
size in an 2-D image, one assumes a basic shape either
explicitly (through using aperture photometry) or implic-
itly (through calculating flux moments, which requires a
center to be defined). An ellipsoid is one of the sim-
plest and most natural low-order shapes against which
all galaxies can be compared, especially for measuring
an average size. This notion is useful: deviations from
the basic ellipsoid shape can then be considered as higher
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order modifications, even for highly irregular galaxies.
Nevertheless, there are many situations where it is de-

sirable to use models that deviate from ellipsoid shapes.
Contrary to the common practice, there are numerous
ways to break from axisymmetry. However, the harder
challenge is to devise a scheme that is intuitive to grasp
and well motivated. Breaking free from axisymmetry al-
lows for other interesting science applications, including
a promising new way to quantify asymmetry.

1.2. The Next Generation of Parametric Imaging
Fitting

In this study we present, as a proof of concept, new ca-
pabilities in 2-D image fitting that progress beyond the
limitations of traditional parametric fitting models. One
key aspect of our approach is to first identify a mini-
mum basis set of features that spans the range of galaxy
morphologies and shapes. From experience, we deter-
mine those four “basic elements” to be bending, Fourier,
coordinate rotation, and truncation modes. Secondly,
one of the main reasons why parametric fitting is use-
ful is that the profile parameters are intuitive to grasp
(e.g., concentration index, effective radius, total lumi-
nosity, etc.). Therefore, another key requirement is that
the traditional profile parameters must retain their origi-
nal, intuitive, meaning even under detailed shape refine-
ments, and even under such extreme cases as irregular
galaxies. This can be accomplished if the basic premise
starts with the traditional ellipsoid function, on top of
which one can add perturbations, rotations, irregulari-
ties, and curvature. This is possible because of the fact
that simple ellipsoid fits are a reasonable way to quan-
tify global average properties, and other details can be
considered to be higher order perturbations that may be
of other practical interest.

As we attempt to demonstrate, combining just the four
basic mophology elements can quickly yield a dizzying ar-
ray of possibilities for fitting galaxies. The end result can
look highly “realistic.” Indeed, it is now possible to fit
many spiral galaxies, asymmetric tidal features, irregu-
lar galaxies, ring galaxies, dust lanes, truncated galaxies,
arcs, among others (though, certainly, there are limita-
tions). However, it is important to realize that “being
possible” often does not mean “being necessary” or “be-
ing practical.” Necessity ought to be judged in the sci-
entific context of whether it is worth the extra effort to
obtain diminishing returns. For instance, to measure to-
tal galaxy luminosity, it is often unnecessary to fit high
order Fourier modes or spiral rotations. For many sci-
ence studies interested in global parameterization, often
a single ellipsoid component would suffice. It is there-
fore important to always let the science determine what
kind of analysis is required, rather than to use the new
capabilities in the absence of a clearly defined goal. Hav-
ing provided some foregoing disclaimers, some of the key
scientific reasons motivating the new capabilities are to:

• Quantify global asymmetry or substructure asym-
metry.

• Quantify bending modes for weak-lensing applica-
tions, or fit arcs in the image plane for strong grav-
itational lenses.

• Obtain more accurate substructure decomposition
in the presence of bars, spirals, rings, etc.

• Obtain more accurate global photometry.

• Quantify profile deviation in inner or outer regions
of a galaxy, such as disk truncations, deviations
from a Sérsic function, etc.

• Extract parametric information to the limits im-
posed by resolution, signal-to-noise, and other
small scale fluctuations.

• Quantify model-dependent errors in the decompo-
sition.

We thus begin by giving an overview of the Galfit
software (§ 2). Then, we introduce the radial profile func-
tions that one can use (§ 3), and illustrate how symmet-
ric and asymmetric shapes can be generated by modify-
ing the coordinate system in (§ 4). Next, we introduce
a new capability that allows for radial profile trunca-
tion (§ 5). Enabling all the capabilities may result in
extremely complex galaxy shapes, the interpretation of
which may give concerns to those new to the analysis.
Therefore, we discuss the interpretations and model de-
generacies of the parameters in § 6. We then apply these
new features to real galaxies in § 7, followed by conclud-
ing remarks (§ 8).

2. THE 2-D FITTING PROGRAM Galfit

This study builds on an existing algorithm named
Galfit5 (Peng et al. 2002), which is a 2-D paramet-
ric galaxy fitting algorithm, in the same spirit as other
widely used 2-D image-fitting algorithms (e.g., (GIM2D:
Simard 1998; Simard et al. 2002); (BUDDA: de Souza
et al. 2004)). Galfit is a stand-alone program writ-
ten in the C language, and can be run on most modern
operating systems. To read and produce FITS images,
Galfit calls upon the CFITSIO package (Pence 1999).
Galfit is designed to allow for complex image decom-
position tasks: by allowing for an arbitrary number and
mix of parametric functions (Sérsic, Moffat, Gaussian,
exponential, Nuker, etc.), it can simultaneously fit any
number of galaxies and their substructures. It is possible
to use Galfit for both interactive analysis and galaxy
surveys where complete automation is required. How-
ever, automation requires the use of an external “wrap-
ping” algorithm written by the user that takes care of
both the pre-processing (object identification, initial pa-
rameter estimation) and post-processing (extracting and
tabulating fitting parameters) of the fitting results.

2.1. χ2
ν and Error Analysis

Galfit is a non-linear least-squares fitting algorithm
that uses the Levenberg-Marquardt technique to find the
optimum solution to a fit. The Levenberg-Marquardt
algorithm is currently the most efficient one for searching
large parameter spaces, allowing for the possibility to fit
complex images with multiple components and a large
number of parameters. Galfit determines the goodness
of fit by calculating χ2 and computing how to adjust the
parameters for the next step. It continues to iterate until

5 http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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the χ2 no longer decreases appreciably. The indicator of
goodness of fit is the normalized or reduced χ2, χ2

ν :

χ2
ν =

1

Ndof

nx
∑

x=1

ny
∑

y=1

(fdata(x, y) − fmodel(x, y))
2

σ(x, y)
2 , (1)

where

fmodel(x, y) =

m
∑

ν=1

fν(x, y; α1...αn). (2)

Ndof is the number of degrees of freedom in the fit; nx
and ny are the x and y image dimensions; and fdata(x, y)
is the image flux at pixel (x, y). The fmodel(x, y) is the
sum of m functions of fν(x, y; α1...αn), with n free pa-
rameters (α1...αn) in the 2-D model. The uncertainty as
a function of pixel position, σ(x, y), is the Poisson error
at each pixel, which can be provided as an input image.
If no σ-image is given, one is generated based on the
gain and read-noise parameters contained in the image
header. Pixels in the image marked as being bad do not
enter into the calculation of χ2.

In the Levenberg-Marquardt algorithm, the minimiza-
tion process involves computing a Hessian matrix, which
is closely related to the covariance matrix of the param-
eters (e.g., see Press et al. 1992). The covariance matrix
is then directly related to the formal uncertainty in the
fitting parameters that Galfit reports. However, the
usefulness of the formal uncertainty is limited to ideal
situations where the fluctuations in the residual image
are only due to Poisson noise after removing the model.
This situation is mostly realized in idealized situations,
such as image simulations. In real images, the residuals
are due to structures like stars and galaxies that are not
fitted, flat-fielding errors, and imperfect functional match
to the data. These factors cause formal uncertainties re-
ported in numerical fits to be only lower estimates. In
image fitting, more realistic uncertainties are necessarily
obtained by other processes, such as comparing fit results
based on different assumptions about the model rather
than through a formal covariance matrix.

In summary, the three images Galfit takes as input
to calculate least squares are the data, a σ-image, and an
optional bad pixel mask. To account for image smearing
by the PSF, Galfit will also require a PSF image.

2.2. Accounting for Telescope Optics and Atmospheric
Seeing

The wavefront of light from distant sources is always
perturbed by the act of producing an image, distortions
due to imperfect optics, and sometimes by the Earth’s
atmosphere, resulting in some blurring. To accurately
compare the intrinsic shape of an object with a model,
image blurring must be taken into account. In image fit-
ting this is often done by convolving a model image with
the input PSF before comparing with the data. The pro-
cess of performing convolution is mathematically rigor-
ous, but the actual implementation has several subtleties.

One consideration is the computation speed, as the
process of convolving a model is frequently the most time
consuming part of parametric fitting. The trade-off is
that the smaller the convolution region the faster the
computation time, but also the less accurate. To achieve

a compromise, Galfit allows the user to decide on the
size of the convolution region. This gives the flexibility
for one to hone in on a solution quickly before trying to
obtain higher accuracy in the final step.

Another important issue to consider is whether to con-
volve each component separately or all of them together
just once in the final image. This is an important con-
sideration because even though the model functions are
analytic, they are resampled by discrete pixel grids, re-
sulting in a “pixellated” profile instead of one that is
infinitely smooth. If an intrinsic model is sufficiently
sharp, the curvature may not be critically subsampled
by the pixels prior to convolution, regardless of whether
the recorded data are Nyquist sampled. The resulting
profile after image convolution therefore can depend very
sensitively on how the model is centered on a pixel. If
such a model is created off-center, pixellation effectively
broadens out the model ever so slightly more than normal
once convolution is applied, but the effect is noticeable in
high-contrast imaging studies. Therefore, the better way
to deal with “pixellation broadening” is to convolve each
model component individually rather than the entire im-
age at once. To do so, Galfit creates every model on a
pixel center; the pixel fluxes near the center of the mod-
els are integrated over the pixel area adaptively. Then
to effect an off-centered model, Galfit makes use of
the convolution theorem by shifting the PSF by the re-
quired amount before convolving it with the model. This
process circumvents the problem of artificial pixellation
broadening because whereas the model core region may
not be sufficiently resolved, the PSF ought to be6.

Shifting the PSF, however, can be quite problematic
when it is marginally Nyquist sampled, or if the diffrac-
tion patterns are not critically sampled. Accurate shift-
ing of the PSF is of basic importance in high contrast
imaging studies. For instance, in the case of studying
active galaxies with a strong central point source, issues
of contrast, resolution, and sampling all conspire to make
the PSF fitting crucial to deriving a reliable host model.
In such situations, the standard interpolation techniques
(e.g., linear or spline) tend to broaden out the PSF core,
so they are only accurate in the extended outskirts where
the gradient is shallow. One alternative is to interpolate
using the sinc kernel, which is theoretically the perfect
interpolation kernel for critically sampled images, and
preserves the intrinsic width of the data. However, signif-
icant “ringing” appears around sharp features (i.e. PSF
or galaxy core). This effect can be nearly as bad on a
fit as pixellation broadening. An improved solution is
to taper the wing of the sinc kernel using a windowing
function (e.g., Lanczos), but the ringing often may still
be quite large beyond the PSF core, which must be fur-
ther suppressed.

Galfit seeks a compromise by using a hybrid scheme
where the interpolation in the PSF core is done by us-
ing a sinc kernel with a Kaiser window function so as
to faithfully preserve the width, but a bicubic spline
interpolation is used in the wings. The result of this
scheme is that for a Gaussian having a full width at half-
maximum (FWHM) of 2 pixels, the interpolation is ac-
curate to 0.1% in the center, and 0.03% at the distance

6 If the PSF is not resolved then the convolution process will not
be accurate regardless of the technique.
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# IMAGE and GALFIT CONTROL PARAMETERS
A) gal.fits # Input data image (FITS file)
B) imgblock.fits # Output data image block
C) none # Sigma image name (made from data if blank or "none")
D) psf.fits # # Input PSF image and (optional) diffusion kernel
E) 1 # PSF fine sampling factor relative to data
F) none # Bad pixel mask (FITS image or ASCII coord list)
G) none # File with parameter constraints (ASCII file)
H) 1 200 1 100 # Image region to fit (xmin xmax ymin ymax)
I) 100 100 # Size of the convolution box (x y)
J) 20.000 # Magnitude photometric zeropoint
K) 1.000 1.000 # Plate scale (dx dy) [arcsec per pixel]
O) both # Display type (regular, curses, both)
P) 0 # Choose: 0=optimize, 1=model, 2=imgblock, 3=subcomps

# INITIAL FITTING PARAMETERS
#
# For component type, the allowed functions are:
# sersic, expdisk, edgedisk, devauc, king, nuker, psf,
# gaussian, moffat, ferrer, and sky.
#
# Hidden parameters will only appear when they’re specified:
# Bn (n=integer, Bending Modes).
# C0 (diskiness/boxiness),
# Fn (n=integer, Azimuthal Fourier Modes).
# R0-R10 (coordinate rotation, for creating spiral structures).
# To, Ti, T0-T10 (truncation function).
#
# ------------------------------------------------------------------------------
# par) par value(s) fit toggle(s) # parameter description
# ------------------------------------------------------------------------------

# Component number: 1
0) sersic3 / # Component type
1) 50.0000 50.0000 1 1 # Position x, y
3) 15.0000 1 # Surface brghtnss @ outer R_break [mag/arcsec^2]
4) 30.0000 1 # R_e (effective radius) [pix]
5) 4.0000 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.7000 1 # Axis ratio (b/a)
10) -30.0000 1 # Position angle (PA) [deg: Up=0, Left=90]
Ti) 2 # Inner truncation by component number(s)
F5) 0.1500 20.0000 1 1 # Azim. Fourier mode 5, amplitude, & phase angle

# Component number: 2
T0) radial # Truncation type (radial, length, height)
T1) 45.0000 45.0000 1 1 # Position x, y
T4) 8.0000 1 # Break radius (99% normal flux) [pixels]
T5) 5.0000 1 # Softening length (1% normal flux) [pixels]
T9) 0.7000 1 # Axis ratio (optional)
T10) 45.0000 1 # Position angle (optional) [deg: Up=0, Left=90]
F1) 0.6000 20.0000 1 1 # Azim. Fourier mode 1, amplitude, & phase angle
B2) -5.000e+00 1 # Bending mode 2 amplitude

# Component number: 3
0) sersic # Component type
1) 150.0000 50.0000 1 1 # Position x, y
3) 7.0000 1 # Integrated magnitude
4) 15.0000 1 # R_e (effective radius) [pix]
5) 2.0000 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.5000 1 # Axis ratio (b/a)
10) 0.0000 1 # Position angle (PA) [deg: Up=0, Left=90]

R0) power # PA rotation func. (power, log, none)
R1) 0.0000 1 # Spiral inner (i.e. asymptotic) radius [pixels]
R2) 15.0000 1 # Spiral outer (i.e. asymptotic) radius [pixels]
R3) 180.0000 1 # Cumul. rotation out to outer radius [degrees]
R4) 0.3000 1 # Asymptotic spiral powerlaw
R9) 10.0000 1 # Inclination to L.o.S. [degrees]
R10) 45.0000 1 # Sky position angle
F1) 0.3000 45.0000 1 1 # Azim. Fourier mode 1, amplitude, & phase angle
F5) 0.1000 90.0000 1 1 # Azim. Fourier mode 5, amplitude, & phase angle

Fig. 1.— Example of an input file. The object list is dynamic and can be extended as needed. Each model is modified by a mix of higher
order Fourier modes, bending modes, truncation, or spiral structure. These parameters produce the models shown in Figure 2.
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Fig. 2.— Shapes produced by parameters in the Galfit input
file of Figure 1. Left: a Sérsic light profile modified by a single
Fourier mode m = 5, creating the star shape. It is truncated in
the inner region by a truncation function, which is modified by a
bending mode m = 2, with a lopsided Fourier mode of m = 1.
Right: a Sérsic light profile with Fourier modes m = 1 and m = 5
is modified by a coordinate rotation function to create a lopsided,
multi-armed, spiral structure.

of the FWHM relative to the peak (or 1% relative to
the local flux). For oversampled PSFs, the interpola-
tion is even more accurate. Compared to bicubic spline
interpolation, our scheme is about 20 times more accu-
rate. From a more practical standpoint, the mismatch
in the PSFs between data taken using the Hubble Space
Telescope (HST) imaging cameras and synchronously ob-
served PSFs is rarely better than 3% in the core. For
all practical purposes, our interpolation scheme there-
fore will more than suffice for the most demanding high
contrast studies of quasar host galaxies at high redshift.

When the data are undersampled, convolution of the
model can still be done correctly if the convolution PSF
provided to Galfit is either critically sampled or over-
sampled. In this situation, Galfit will generate a model
on a finer grid, convolve it with the PSF, then bin the
result down to the resolution of the data for comparison.
One way for users to obtain an oversampled PSF com-
pared to the data is to dither the PSF observations by
fractional pixels. Another way is to numerically recon-
struct a more oversampled PSF star by extracting multi-
ple stars from the data image itself (e.g., via DAOphot,
Stetson 1987).

However, lastly, we note that when the data and the
convolution PSF are both undersampled (i.e. with PSF
FWHM < 2 pixels), convolution cannot be done accu-
rately. In such a situation, for the purpose of image
fitting, it is often better to broaden out the data and the
PSF to critical sampling than to perform the analysis in
the original resolution (Kim et al. 2008a).

2.3. The Concept of a Model Component

Using the new features, each model can take on a
shape that is completely unrecognizable from a tradi-
tional ellipsoid shape. It is therefore necessary to clarify
what constitutes a single model component. In Gal-
fit, each model component is referred to by the name
of the surface brightness profile, just as it is standard
practice to call something a Sérsic, Gaussian or expo-
nential component in traditional models. As implied by
this notion, no matter how complex the shape, the flux
declines monotonically (unless modified by a truncation
function, Section 5) from a peak in every radial direc-

tion in a non-rotating frame, or along an arc in a rotat-
ing frame, strictly following the functional form specified
by the user. The radial profile parameters are mathe-
matically decoupled from the azimuthal shape because
the radial profile functions are self-similar in the expres-
sion of the radius parameter, i.e. with powers of (r/re),
whereas the complex azimuthal shapes are obtained by
simply stretching the coordinate metric into more exotic
grids than the standard Cartesian grid. This idea is in
fact implicit in all 2-D image-fitting algorithms, where
the axis ratio parameter, q, turns a circular profile into
an ellipse by compressing the coordinate axis along one
direction, even though the functional form of the profile
remains the same in every direction. In the same man-
ner, the definition of a scale or effective radius in a com-
ponent, no matter how complex the shape, corresponds
closely to that of the best-fitting ellipse in the direction
of the semi-major axis.

Figure 1 demonstrates how Sérsic profiles can be modi-
fied by bending modes, Fourier modes, and a spiral rota-
tion function in Galfit—the results of which are shown
in Figure 2. In the example, there are only two Sérsic
model components, despite the appearance of numerous
parameters: both the “radial” and “power” functions are
modifications to the Sérsic profiles. Furthermore, the
Fourier and bending modes can modify the Sérsic pro-
files, or modify the modifiers to the light profiles. Each
radial surface brightness profile has a single peak and the
flux decline is monotonic radially (unless truncated by a
truncation function called “radial” in Figure 1) or in a
rotating coordinate system (called “power” in Figure 1).
Therefore, for each component, it is still meaningful to
talk about, for example, an “average” light profile (e.g.,
Sérsic), with an average Sérsic concentration index n—
no matter what the galaxy may look like azimuthally. In
this manner even irregular galaxies can be parameterized
in terms of their average light profile. When the average
peak of an irregular galaxy is not located at the geomet-
ric center, it has a high-amplitude m = 1 Fourier mode
(i.e. lopsidedness).

In such a way, no matter how complex the azimuthal
shape, interpreting the surface brightness profile parame-
ters is just as straightforward as the traditional ellipsoid.

3. THE RADIAL PROFILE FUNCTIONS

The radial profile functions describe the intensity fall-
off of a model away from the peak, such as the Sérsic,
Nuker, or exponential models, among others. For exam-
ple, early-type galaxies typically have steep radial pro-
files whereas late-type galaxies have shallower intensity
slope near the center. The rate of decline is governed by
a scale-length parameter. The radial profile is often of
primary interest in galaxy studies from the standpoint
of classification, and because the exact functional form
may have some bearing on the path of galaxy evolution.
In Galfit the radial profile can have the following func-
tional forms, which are some of the most frequently seen
in literature.

The Sérsic Profile The Sérsic power law is one of
the most frequently used to study galaxy morphology,
and has the following functional form:
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Fig. 3.— The Sérsic profile, where re and Σe are held fixed.
Notice that the larger the Sérsic index value n, the steeper the
central core, and more extended the outer wing. A low n has
a flatter core and a more sharply truncated wing. Large Sérsic
index components are very sensitive to uncertainties in the sky
background level determination because of the extended wings.

Σ(r) = Σe exp

[

−κ

(

(

r

re

)1/n

− 1

)]

. (3)

Σe is the pixel surface brightness at the effective radius
re. The parameter n is often referred to as the concen-
tration parameter. When n is large, it has a steep inner
profile and a highly extended outer wing. Inversely, when
n is small, it has a shallow inner profile and a steep trun-
cation at large radius. The parameter re is known as the
effective radius such that half of the total flux is within
re. To make this definition true, the dependent variable
κ is coupled to n; thus, it is not a free parameter. The
classic de Vaucouleurs profile that describes a number
of galaxy bulges is a special case of the Sérsic profile
when n = 4 (corresponding to κ = 7.67). As explained
below, both the exponential and Gaussian functions are
also special cases of the Sérsic function when n = 1 and
n = 0.5, respectively. As such the Sérsic profile is a
common favorite when fitting a single component.

The flux integrated out to r = ∞ for a Sérsic profile
is:

Ftot = 2πr2
eΣee

κnκ−2nΓ(2n)q/R(C0; m). (4)

The term R(C0; mi) is a geometric correction factor when
the azimuthal shape deviates from a perfect ellipse. As
the concept of azimuthal shapes will be discussed in Sec-
tion 4, we will only comment here that R(C0; mi) is sim-
ply the ratio of the area between a perfect ellipse with
the area of the more general shape, having the same
axis ratio q and unit radius. The shape can be modi-
fied by Fourier modes (m being the mode number) or

diskiness/boxiness. For instance, when the shape is mod-
ified by diskiness/boxiness, R(C0) has an analytic solu-
tion given by:

R(C0) =
π(C0 + 2)

4β(1/(C0 + 2), 1 + 1/(C0 + 2))
, (5)

where β is the Beta function. In general, when the
Fourier modes are used to modify an ellipsoid shape,
there is no analytic solution for R(mi), and so the area
ratio must be integrated numerically.

In Galfit, the flux parameter that one can use for the
Sérsic function is either the integrated magnitude mtot

or some kind of surface brightness magnitude, for exam-
ple at the center (µ0), at the effective radius (µe), or at
the break radius (µbreak) for truncated profiles (see Sec-
tion 5). The integrated magnitude follows the standard
definition:

mtot = −2.5log10

(

Ftot

texp

)

+ mag zpt, (6)

where texp is the exposure time from the image header.
Each Sérsic function can thus potentially have 7 classical
free parameters in the fit: x0, y0, mtot, re, n, q, and
θPA. The non-classical parameters, C0, Fourier modes,
bending modes, and coordinate rotation may be added as
needed. There is no restriction on the number of Fourier
modes, and bending modes, but each Sérsic component
can only have a single set of C0 and coordinate rotation
parameters (see Section 4 for details).

The Exponential Disk Profile The exponential
profile has some historical significance, so Galfit is ex-
plicit about calling this profile an exponential disk, even
though an object that has an exponential profile need not
be a classical disk. Historically, an exponential disk has
a scale length rs, which is not to be confused with the ef-
fective radius re used in the Sérsic profile. For situations
where one is not trying to fit a classical disk it would be
less confusing nomenclature-wise to use the Sérsic func-
tion with n = 1, and quote the effective radius re. But
because the exponential disk profile is a special case of
the Sérsic function for n = 1 (see Figure 3), there is a
relationship between re and rs, given by

re = 1.678rs (For n = 1 only). (7)

The functional form of the exponential profile is

Σ(r) = Σ0 exp

(

− r

rs

)

, (8)

and the total flux is given by

Ftot = 2πr2
sΣ0q/R(C0; m). (9)

The 6 free parameters of the profile are: x0, y0, mtot, rs,
θPA, and q.

The Gaussian Profile The Gaussian profile is an-
other special case of the Sérsic function with n = 0.5 (see
Figure 3), but here the size parameter is the FWHM in-
stead of re. The functional form is

Σ(r) = Σ0 exp

(−r2

2σ2

)

, (10)
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Fig. 4.— The modified Ferrer profile. The black reference curve
has parameters rout = 100, α = 0.5, β = 2, and Σ0 = 1000. The
red curves differ from the reference only in the α parameter, as
indicated by the red numbers. Likewise, the green curves differ
from the reference only in the β parameter, as indicated by the
green numbers.

and the total flux is given by

Ftot = 2πσ2Σ0q/R(C0; m), (11)

where FWHM = 2.354σ. The 6 free parameters of the
profile are: x0, y0, mtot, FWHM, q, and θPA.

The Modified Ferrer Profile The Ferrer profile
(Figure 4; Binney & Tremaine 1987) has a nearly flat core
and an outer truncation. The sharpness of the truncation
is governed by the parameter α, whereas the central slope
is controlled by the parameter β. Because of the flat
core and sharp truncation behavior, historically it is often
used to fit galaxy bars and “lenses.” The profile

Σ(r) = Σ0

(

1 − (r/rout)
2−β
)α

(12)

is only defined within r ≤ rout, beyond which the func-
tion has a value of 0. The 8 free parameters of the Ferrer
profile are: x0, y0, central surface brightness, rout, α, β,
q, and θPA.

It is worth mentioning that a Sérsic profile with low
index n < 0.5 has similar profile shapes, thus it is often
used instead of the Ferrer function.

The Empirical (Modified) King Profile The em-
pirical King profile (Figure 5) is often used to fit the light
profile of globular clusters. It has the following form (El-
son 1999):

Fig. 5.— The empirical King profile. The black reference curve
has parameters rc = 50, rt = 100, α = 2, and Σ0 = 1000. The
red curves differ from the reference curve only in the α parameter,
as indicated by the red numbers. Likewise, the green curves differ
from the reference only in the rc parameter, as indicated by the
green numbers.

Fig. 6.— The Moffat profile. The black reference curve has
parameters n = 2, FWHM = 20, and Σ0 = 1000. The other
colored lines differ only in the concentration index n, as shown by
the numbers. The dashed line shows a Gaussian profile of the same
FWHM.
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Fig. 7.— The Nuker profile. The black reference curve has parameters rb = 10, α = 2, β = 2, γ = 0, and Ib = 100. For the other colored
lines, only one value differs from the reference, as shown in the legend.

Σ(r)=Σ0

[

1 − 1

(1 + (rt/rc)2)1/α

]−α

×
[

1

(1 + (r/rc)2)1/α
− 1

(1 + (rt/rc)2)1/α

]α

.(13)

The standard empirical King profile has a power law with
index α = 2. In Galfit, α can be a free parameter.
In this model, the flux parameter to fit is the central
surface brightness, µ0, expressed in mag arcsec−2 (see
Equation 20). The other free parameters are the core
radius (rc) and the truncation radius (rt), in addition
to the geometrical parameters. Outside the truncation
radius, the function is set to 0. Thus, the total number
of classical free parameters is 8: x0, y0, µ0, rc, rt, α, q,
and θPA.

The Moffat Profile The profile of the HST WFPC2
PSF is well described by the Moffat function (Figure 6).
Other than that, the Moffat function (Moffat 1969) is
less frequently used than the above functions for galaxy
fitting. The functional profile is

Σ(r) =
Σ0

[1 + (r/rd)2]
n , (14)

and the total flux is given by

Ftot =
Σ0πr2

dq

(n − 1)R(C0; m)
. (15)

In Galfit the size parameter to fit is the FWHM, where
the relation between rd and FWHM is

rd =
FWHM

2
√

21/n − 1
. (16)

The 7 free parameters are: x0, y0, mtot (i.e. total mag-
nitude, instead of µ0) FWHM (instead of rd), the con-
centration index n, q, and θPA.

The Nuker Profile The Nuker profile (Figure 7) was
introduced by Lauer et al. (1995) to fit the central light
distribution of nearby galaxies, and it has the following
form:

I(r) = Ib 2
β−γ

α

(

r

rb

)−γ [

1 +

(

r

rb

)α]
γ−β

α

. (17)

The flux parameter to fit is µb, the surface brightness of
the profile at rb, which is defined as

µb = −2.5 log10

(

Ib

texp∆x∆y

)

+ mag zpt, (18)

where texp is the exposure time from the image header,
and ∆x and ∆y are the platescale in arcsec. The Nuker
profile is a double power law, where (in Equation 17) β
is the outer power law slope, γ is the inner slope, and α
controls the sharpness of the transition. The motivation
for using this profile is that the nuclei of many galaxies
appear to be fit well in 1-D (see Lauer et al. 1995) by
a double power law. However, caution should be exer-
cised when using this function because, for example, a
low value of α (α . 2) can be mimicked by a combina-
tion of high γ and low β (compare Figure 7c with the
other two panels), which presents a serious potential for
degeneracy. In all there are there are 9 free parameters:
x0, y0, µb, rb, α, β, γ, q, and θPA.

The Edge-On Disk Profile Both the Sérsic (Equa-
tion 3) and exponential disk profile (Equation 8) are
merely empirical descriptors of a galaxy light profile.
However, for edge-on disk galaxies, there is a more



10

physically motivated light profile: under the assumption
that the disk component is locally isothermal and self-
gravitating, the light profile distribution is given by (van
der Kruit & Searle 1981):

Σ(r, h) = Σ0

(

r

rs

)

K1

(

r

rs

)

sech2

(

h

hs

)

, (19)

where Σ0 is the pixel central surface brightness, rs is
the major-axis disk scale length, hs is the perpendicular
disk scale height, and K1 is a Bessel function. The flux
parameter being fitted in Galfit is the central surface
brightness:

µ0 = −2.5 log10

(

Σ0

texp∆x∆y

)

+ mag zpt. (20)

Note that if the disk is oriented horizontally the coor-
dinate r is the x-distance (as opposed to the radius) of a
pixel from the origin. There are 6 free parameters in the
profile model: x0, y0, µ0, rs, hs, and θPA.

The PSF Profile For unresolved sources, one can
fit pure stellar PSFs to an image (as opposed to func-
tions with narrow FWHM convolved with the PSF). The
PSF function is simply the convolution PSF image that
the user provides, so there is no prescribed analytical
functional form. This is also the only profile that is not
convolved in Galfit. The PSF has only 3 free param-
eters: x0, y0, and mtot. Because there is no analytical
form, the total magnitude is determined by integrating
over the PSF image and assuming that it contains 100%
of the light. If the PSF wing is vignetted, there will be
a systematic offset between the flux Galfit reports and
the actual value.

If one wants to fit this “function,” it is important to
make sure that the input PSF is close to, or super-,
Nyquist sampled. The PSF interpolation used in shifting
is done by a sinc function with a Kaiser window, which
can preserve the widths of the PSF even under subpixel
shifting. This is in principle better then spline interpo-
lation or other high-order interpolants. However, if the
PSF is undersampled, aliasing will occur, and the PSF
interpolation will be poor. In this situation, it is bet-
ter to provide an oversampled PSF to Galfit (and to
specify the amount of oversampling), even if the data are
undersampled. With HST data this can be done using
TinyTim (Krist & Hook 1997) or by combining stars.
Galfit will take care of rebinning during the fitting.

Note that the alternative to fitting a PSF is to fit a
Gaussian with a small width (e.g., 0.4–0.5 pixels), which
Galfit will convolve with the PSF. This is generally not
advisable if a source is a pure point source because con-
volving a narrow function with the PSF will broaden out
the overall profile, even if slightly. The convergence can
also be poor if the FWHM parameter starts becoming
smaller than 0.5 pixels. However, this technique can still
be useful to see if a source is truly resolved.

The Background Sky The background sky is a flat
plane with flux gradient along x and y directions. Thus
it has a total of 3 free parameters. The pivot point for
the sky is fixed to the geometric center (xc, yc) of the im-
age, calculated by (npix +1)/2, where npix is the number

of pixels along one dimension. The tip and tilt are calcu-
lated relative to that center. Because the galaxy centroid
located at (x, y) is in general not at the geometric center
(xc, yc) of the image, the sky value directly beneath the
galaxy centroid is calculated by:

sky(x, y) = sky(xc, yc) + (x − xc)
dsky

dx
+ (y − yc)

dsky

dy
.

(21)

4. THE AZIMUTHAL SHAPE FUNCTIONS

Whereas the radial profile governs the decline of galaxy
flux radially from a central peak, the azimuthal functions
generate the projected shape in the x − y plane of the
image. For instance, ellipsoidal, irregular, spiral, disky,
and boxy shapes are all created by azimuthal functions.
All traditional 2-D image-fitting techniques use an ellipse
as the fundamental shape, which is obtained by stretch-
ing the coordinate grid along one dimension compared to
the orthogonal direction. Indeed, all azimuthal functions
are coordinate transformations. Therefore, to change a
shape from an ellipse into more exotic shapes, the coor-
dinate system [r(x, y)] can be further stretched or shrunk
radially from the peak, as a function of azimuth angle.
This coordinate transformation preserves the functional
form of the surface brightness profile in every direction
because the profiles are self-similar— that is, they are
functions of (r/rscale). Thus defined, the radial profile
parameters (e.g., re, q, central concentration, etc.) re-
tain their original meaning no matter the complexity of
the azimuthal shape.

We introduce four new ways to modify the azimuthal
shape of a model, beginning with the traditional ellip-
soidal model. On top of an ellipsoid, this section de-
scribes how one can add Fourier modes, bending modes,
and coordinate rotation functions (power law and loga-
rithmic). Each component can be modified by any one or
all of the azimuthal functions simultaneously, depending
on the complexity of the galaxy one is trying to analyze.
The next section will cover truncation functions.

Generalized Ellipses The simplest azimuthal shape
in Galfit is the traditional generalized ellipse. This is
the starting point for all Galfit analysis, no matter how
complex is the final outcome. The radial coordinate of
the generalized ellipse is defined by:

r(x, y) =

(

|x − x0|C0+2
+

∣

∣

∣

∣

y − y0

q

∣

∣

∣

∣

C0+2
)

1
C0+2

. (22)

Here, the ellipse axes are aligned with the coordinate
axes, and (x0, y0) is the centroid of the ellipse. Defined
by Athanassoula et al. (1990), the ellipse is called “gen-
eral” in the sense that C0 is a free parameter, which
controls the diskiness/boxiness of the isophote. When
C0 = 0 the isophotes are pure ellipses. With decreasing
C0 (C0 < 0), the shape becomes more disky (diamond-
like), and conversely, more boxy (rectangular) as C0 in-
creases (C0 > 0) (see Figure 8). The major axis of the
ellipse can be oriented to any PA. Thus, there are a total
of 4 free parameters (x0, y0, q, θPA) in the standard ellipse
and an additional one, C0, for the generalized ellipse.
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Fig. 8.— Generalized ellipses with (a) axis ratio q = 1 and (b) axis ratio q = 0.5. Various values of the diskiness/boxiness parameter C0

are labeled.

Fourier Modes Few galaxies look like perfect el-
lipsoids, and one can better refine the azimuthal shape
by adding perturbations in the form of Fourier modes.
The Fourier perturbation on a perfect ellipsoid shape is
defined in the following way:

r(x, y) = r0(x, y)

(

1 +

N
∑

m=1

am cos (m(θ + φm))

)

.

(23)
In the absence of Fourier modes in the parenthesis, the
r0(x, y) term is the radial coordinate for a traditional
ellipse, and θ = arctan ((y − y0)/((x − x0)q)) defined in
Equation 22. The Fourier amplitude for mode m is am.
Defined as such, am is the fractional deviation in radius
from a generalized ellipse of Equation 22. The number of
modes N is unrestricted, and any mode can be left out.
The “phase angle,” φm, is the relative alignment of mode
m relative to the PA of the generalized ellipse; the phase
angle is 0◦ in the direction of the semi-major axis of the
generalized ellipse (rather than up), increasing counter-
clockwise. Figure 9 shows some examples of how Fourier
modes modify a circle and an ellipse into other shapes.

Each Fourier mode has 2 free parameters, am and φm,
and the number of modes the user can add is unre-
stricted. However, the most useful modes are low-order
ones (m = 1, 3...6). We note that the m = 2 mode is
partially degenerate with the classical axis ratio param-
eter, q, for an ellipse. Therefore the use of m = 2 and q,
together, should be largely avoided except in some situ-
ations (e.g., peanut-looking bulges).

The phase angles of the Fourier modes are also useful
information to keep in mind. Modes with the following
phase angles have the following symmetry properties:

• Symmetry about a central point: a1 = 0, regardless
of other mode phase and amplitude.

• For all modes m, there is reflection symmetry at:

φm = 0◦, ± 180◦

m . For m = even, this symmetry is
about both the major and minor axes, whereas for
m =odd, the reflection symmetry is only about the
major axis.

• For odd modes of m, there is additional reflection
symmetry about the minor axis at: φm = ± 90◦

m .

An irregular galaxy has angles that are “out of phase”
whereas regular galaxies have angles that are more “in
phase” (i.e. reflectionally symmetric around either minor
or major axis). Therefore, it is possible to quantify the
degree of asymmetry by constructing an index based on
the amplitude and phase angles of the Fourier modes.
The most important asymmetry index is the m = 1
mode, which captures the lopsidedness (AL) of a galaxy:

AL = |a1| . (24)

Asymmetric galaxies are also characterized by overall de-
viation from an ellipse; thus, another useful quantity to
measure is the sum of the Fourier amplitudes:

AE =
N
∑

m

|am| . (25)

However, the sum of the Fourier amplitudes does not
account for the fact that galaxies that only have reflec-
tion symmetry are probably also dynamically relaxed
systems. Therefore, a more enhanced descriptor is given
by:

AG = |a1|+
∑

m=even

|am| sin2

(

πm
φm

180◦

)

+

∑

m>1, odd

|am| sin2

(

πm
φm

90◦

)

, (26)
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where φm is in degrees. In this formulation, reflection-
ally symmetric amplitude components, except for lop-
sidedness (m = 1), contribute no weight to the global
asymmetry parameter AG. Used together, these three
descriptors provide a useful way to distinguish regular
from irregular galaxies.

Bending Modes Bending modes allow for power-
law-shape curvatures in the model, as opposed to spi-
ral windings. The coordinate transformation (x, y) =⇒
(x′, y′) is obtained by only perturbing the y-axis (in a
rotated frame) in the following way:

y′ = y +

N
∑

m=1

am

(

x

rscale

)m

, (27)

where x′ = x, rscale is the scale radius of the model (i.e.
reff for Sérsic, rs for exponential, etc.). Some examples
of this perturbation are shown in Figure 10. Note that
m = 1 resembles quite closely to the axis ratio parameter,
q. However, the m = 1 bending mode is actually a shear
term, the effect of which is most easily seen when it op-
erates on a purely boxy profile with C0 ≈ 2 (Figure 8a),
shearing it into a more disky shape (see Figure 10d).
The bending modes can be modified by Fourier modes
or diskiness/boxiness to change the higher order shape
of the overall model. This kind of coordinate transfor-
mation again preserves the original meaning of the radial
profiles. Here, the object size parameter refers to the
unstretched size, i.e. projected onto the original (x, y)
Cartesian frame, as opposed to a length along the curva-
ture.

Coordinate Rotation: The Concept Sometimes
the isophotes of a galaxy can rotate as a function of ra-
dius, as in the case of spiral galaxies. To model spiral pat-
terns, it is now possible to allow for coordinate rotation in
Galfit. Coordinate rotation in Galfit means that the
flux within circular annuli overlayed on a model rotates
as a function of radius, i.e. θ = f(r). The functional form
f(r) can be fairly arbitrary but the most familiar pattern
in nature is that of a logarithmic spiral, i.e. θ ∼ log(r).
However, many spiral galaxies deviate from logarithmic
winding either in the inner region, for instance due to
the presence of a bar, or in the outer region, as might
be due to tidal or non-relaxed features. These structures
pose a problem when fitting galaxy images because one
cannot simply mask out regions of non-interest when the
goal might be to obtain the cleanest separation between
a spiral and other embedded components. Therefore a
pure logarithmic spiral, while useful to trace segments of
a spiral, is often not ideal for fitting the whole galaxy,
but ought to be modified in some ways. For this reason
we introduce the concept of a hyperbolic-tangent (tanh)
modification to a logarithmic or a power-law spiral.

A pure tanh function looks like Figure 11a, showing
that f(r) asymptotes to constant values at r → ±∞,
which is a highly desirable feature. As shown in Fig-
ure 11a, the function can be scaled, stretched, and shifted
so that θ(r) ≈ 0 at r < rin: it is useful to model a bar-
like feature, which, by definition, has a constant PA as
a function of radius. A tanh function is also useful in
the upper asymptotic limit because f(r) at r > rout,

when multiplied by another function f2(r), takes on the
form of f2(r), and the crosstalk within rin is minimal,
as shown in Figure 11b. In short, a tanh function al-
lows for a transition between two functions: a constant
function at r < rin and another r > rout, for example a
power-law or a logarithmic function. Moreover, the rate
of that transition can be cleanly managed and is easy to
interpret. For this reason a hyperbolic tangent is also a
function of choice later on in Section 5 when we present
the idea of a truncation function. Galfit allows for two
types of coordinate rotation functions, the power-law spi-
ral (α-tanh), and the logarithmic spiral (log-tanh), both
of which are motivated empirically. We note that even
though the logarithmic spiral is favored more in the lit-
erature, we find that the α-tanh spiral is better able to
capture the range of spiral behaviors found in nature be-
cause of the one extra degree of freedom in α, which can
simulate the behavior of the log-tanh spiral over regimes
of interest. We therefore tend to prefer use of the α-tanh
coordinate rotation by default. We now give an overview
of the two types of coordinate rotation:

Coordinate Rotation I: Power-law - Hyperbolic
Tangent (α-tanh) The term “power law” refers
to the fact that the pure tanh function of Figure 11a is
multiplied by a function of the form ∼ rα. The exact
functional form of the rotation function is lengthy (see
Appendix A), but the schematic functional dependence
of the power-law spiral on the parameters is given by the
following:

θ(r) = θout tanh
(

rin, rout, θincl, θ
sky
PA ; r

)

×
[

1

2

(

r

rout
+ 1

)]α

.

(28)
As defined, the power-law rotation starts to take hold
beyond r = rout, and below which the tanh transition
dominates. Figure 11 shows a pure hyperbolic tangent
rotation function for several different values of the pa-
rameter rin (left), and a combination of “bar” (rin) pa-
rameter and the asymptotic power-law slope α (right),
where r is the radial coordinate system and θout is the
rotation angle roughly at rout. The inner radius, rin,
is defined to be the radius where the rotation reaches
roughly 20◦. This angle corresponds fairly closely to our
intuitive notion of bar length based on examining images,
but is not a rigorous, physical definition. The angle θincl

is the line-of-sight inclination of the disk, where θincl = 0◦

is face-on and θincl = 90◦ is perfectly edge-on.
To motivate intuition for the free parameters used in

the coordinate rotation definition, Figures 12 and 13
show a progressive series of images for the spiral rotation
function with different combination of parameter values.
For instance, Figure 12 shows a series of images of pure
hyperbolic tanh spiral with increasing maximum rotation
angle (θout), all else being held constant at the values in-
dicated at the top. The spiral arm winding increases
with increasing θout, and the winding gets tighter, but
the body does not expand wider because rout is fixed.
It is also important to note that a face-on model does
not necessarily mean that the outer-most isophotes are
round. Rather, the ellipticity of the outer-most isophotes
is related to the asymptotic behavior of the rotation func-
tion, which asymptotes to a constant PA beyond a radius
of rout for a pure hyperbolic tangent (α = 0, Figure 11a).
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Fig. 9.— Examples of Fourier modes. (Top) Low-amplitude (am = 0.05) Fourier modes modifying a circular profile (q = 1.0) with phase
angle φ = 0◦. (Bottom) High-amplitude (am = 0.5) Fourier modes modifying an elliptical profile (q = 0.5) with phase angle φ = −45◦.

The isophotes only appear circular in the main body of
the spiral structure when it has a large number of wind-
ings. Figure 13 shows several other examples of barred
and unbarred spirals, with progressively different α val-

ues, sky inclination angle, and rotated to different sky

position angles (θsky
PA ). The parameters for each grey-

scale figure are shown at the top and to the right of the
corresponding (column, row). When the power-law in-
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Fig. 10.— Examples of bending modes modifying a circular profile (q = 1.0) with C0 = 0 (unless indicated otherwise). (Top row)
Low-amplitude (am = 0.05rm

scale
) bending modes. (Bottom row) High-amplitude (am = 0.2rm

scale
) bending modes. Bending modes can be

combined with Fourier modes to change the higher order shape.

Fig. 11.— Hyperbolic tangent-power-law spiral angular rotation functions with outer spiral radius of rout = 100. (a) Examples of pure
hyperbolic tangent spirals (α = 0) with different bar radii (rin). (b) Examples with different bar radii and asymptotic power law α, as
indicated. See Figures 12 and 13 for examples of how these parameters translate into 2-D images.

dex α is negative, the spiral pattern can reverse course
after reaching a maximum value (see right-most column
of Figure 13).

In summary, the hyperbolic tangent power-law func-
tion has 6 free parameters: θout, rin, rout, α, θincl, and

θsky
PA . The thickness of the spiral structure is controlled

by the axis ratio q of the ellipsoid being modified by the
hyperbolic tangent, or by the Fourier modes that modify
the ellipsoid. To create highly intricate and asymmetric
spiral structures, Fourier modes can be used in conjunc-
tion with coordinate rotation.
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Fig. 12.— Examples of pure (i.e. with power law α = 0 or without logarithmic function) hyperbolic tangent coordinate rotation modifying
an elliptical profile with axis ratio q = 0.4. Note that all panels share the same parameters as shown up top. The spiral model has no bar.
The numbers within each panel show the amount of total winding (units in degrees) at the spiral rotation radius of 50. Notice that outside
r = 50, the rotation angle becomes constant, due to the rotation function being a hyperbolic tangent, thereby creating the appearance of
a flattened disk, even though there is not a separate disk component involved in the model.

We note that the “bar” radius (rin) is a mathematical
tool. Even though the rin term in the coordinate rota-
tion does look like a bar when it is sufficiently positive,
it should be regarded only as a mathematical construct
to grant the rotation function as much flexibility as pos-
sible. This construct can reflect reality, but it does not
have to. For instance, mathematically, a negative rin

radius (Figure 11b) is perfectly sensible because of the
way Equations 28 and 29 (for logarithmic spirals, be-
low) are defined: a negative rin value just means that
the spiral rotation function has a finite rotation angle
at r = 0 relative to the initial ellipsoid out of which it
is constructed. When there is clearly no bar, the rin pa-
rameter can become quite negative; in this case, the fit is
often indistinguishable from one where the bar radius is

0. Furthermore, often times, one may not wish to create
a bar and a spiral out of one smoothly continuous func-
tion for various reasons, for instance because they may
have different widths, the spiral may not extend into the
center, or the spiral may start off in a ring. In these situ-
ations, one can “detach” the bar from the spiral by using
a truncation function (see § 5), by instead creating a bar
with a separate Sérsic, Ferrer, or other function. When
this is done, a “bar radius” is still useful mathematically
in the coordinate rotation function, but it may bear no
physical relation to the physical bar.

Finally, we draw attention to some limitations of the
spiral rotation formulation. While the α-tanh rotation
function works surprisingly well for many spiral galaxies,
the function is smooth, so “kinks” in the spiral struc-
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Fig. 13.— Examples of power law - hyperbolic tangent (α-tanh) coordinate rotation modifying a face-on (θincl = 0◦) elliptical profile
with axis ratio q = 0.4. The parameters of the rotation functions are shown on the top and right-hand side of the diagram. The top panels
show the spiral rotation angle as a function of radius for the panels in the same column. In the right-most column, the spiral arms reverse
direction at r = 30 because the spiral rotation function (top-right panel) decreases in rotation angle.

ture cannot yet be modeled, even though it is possible
to do so by allowing for “kinks” in the rotation function.
Lastly, the spiral structure cannot wind back onto itself,
because that would require the rotation function to be
multi-valued.

Coordinate Rotation II: Logarithmic - Hyper-
bolic Tangent (log-tanh) The winding rate of
spiral arms in late-type galaxies is often thought to be
logarithmic with radius rather than power law. Thus,
Galfit also allows for a logarithmic-hyperbolic tangent

coordinate rotation function, which is defined as:

θ(r) = θout tanh
(

rin, rout, θincl, θ
sky
PA ; r

)

×
[

log

(

r

rws
+ 1

)

/log

(

rout

rws
+ 1

)]

. (29)

Like the α-tanh rotation function, the log-tanh func-
tion has a hyperbolic tangent part that regulates the
bar length and the speed of rotation within rout. Be-
yond rout the asymptotic rotation rate is that of the
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Fig. 14.— Logarithmic - hyperbolic tangent spiral angular rotation functions. (a) Examples of different bar radii, where the outer
hyperbolic spiral radius is rout = rin + 10. The lower horizontal dashed line shows the rotation angle at the “bar” radius (rin). (b)
Examples with different “bar” radii (rin) and winding-scale radii rws, as indicated, illustrating the degree of flexibility of the spiral rotation
rate. The rotation angle at rout is fixed to 150◦, as shown by the upper horizontal dashed line. The left-most, black curve is close to being
a pure logarithmic function, recasted so that at r = 0, the rotation angle θ = 0◦.

logarithm function, which has a winding scale radius
of rws; the larger the winding scale radius, the tighter
the winding. Thus, like the α-tanh spiral, the log-
tanh spiral rotation function also has 6 free parameters:

θout, rin, rout, rws, θincl, and θsky
PA . Note that in terms of

capabilities, the α-tanh function can often reproduce the
log-tanh function and more. Therefore, the α-tanh is
probably a more useful rotation function in practice.

Note that Galfit does not allow for a pure logarith-
mic spiral because such a function has a negative-infinity
rotation angle at r = 0. Therefore, in Galfit, at r = 0
the rotation function reaches θ = 0 (Figure 14). Lastly,
it is also important to keep in mind that the meaning
of the “bar radius,” just as described in the section for
α-tanh rotation function, is a mathematical construct.

5. THE TRUNCATION FUNCTION

Truncation functions allow for the possibility of cre-
ating rings, outer profile cut-offs, dust lanes, or a com-
posite profile in the sense that the inner region behaves
as one function and the outer behaves as another. The
truncation function can modify both the radial profile
and azimuthal shape. A ring can be created by truncat-
ing the inner region of a light profile. Likewise, when a
galaxy has spiral arms that do not reach the center, it
can be viewed as being truncated in the inner region.

5.1. General Principle

In Galfit each truncation function can modify one or
more light profile models. Also, any number of light pro-
files can share the same truncation function. The trunca-
tion function in Galfit is a hyperbolic tangent function
(see Equation 7 in Appendix B). Schematically, a trun-
cated component is created by multiplying a radial light
profile function, f0,i(x, y; ...), by one or more truncation

functions, Pm or 1−Pn (depending on whether the type
is an inner or an outer truncation), in the following way:

fi(x, y; ...) = f0,i(x, y; xc,i, yc,i... qi, θPA,i) × (30)
m
∏

Pm (x, y; xc,m, yc,m, rbreak,m, ∆rsoft,m, qm, θPA,m) ×
n
∏

[1 − Pn (x, y; xc,n, yc,n, rbreak,n, ∆rsoft,n, qn, θPA,n)] .

The break radius, rbreak, is defined to be the location
where the profile is 99% of the original (i.e. untruncated)
model flux at that radius. The parameter ∆rsoft is the
softening length, so that r = rbreak ±∆rsoft is where the
flux drops to 1% of that of an untruncated model at the
same radius (the ± sign depends on whether the trun-
cation is inner or outer). The inner truncation function
(Pm) tapers a light profile in the inner regions of a light
profile, whereas the outer truncation function (1 − Pn)
tapers a light profile in the wings.

The behavior of the hyperbolic tangent function is ideal
for truncation because it asymptotes to 1 at the break
radius r & rbreak and 0 at the softening radius r < rsoft,
and vice versa for the complement function. Thus, when
multiplied to a light profile f(r), the functional behavior
exterior to the break radius has intuitively obvious mean-
ings. For example, as shown in Figure 16a, if a Sérsic
function with n = 4 is truncated in the wings (shown
in red), the core has exactly an n = 4 profile interior to
rbreak (marked with a vertical dashed line), which is a
free parameter to fit. Likewise, an n = 4 profile trun-
cated in the core (green) has exactly an n = 4 profile
exterior to the outer break radius. Thus, when one sums
two functions of different Sérsic indices n (Figure 16b)
the asymptotic profiles of the wing and core retain their
original meaning, and there is very little crosstalk out-
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Fig. 15.— Logarithmic - hyperbolic tangent spiral (log-tanh) angular rotation examples, all face-on (θincl = 0◦) and θ
sky
PA

= 0◦. The
top-left panel shows the meaning of the rotation parameter values at the corners of each box. As with the α-tanh spirals, the log-tanh
spiral can be tilted and rotated to any sky projection angle, or combined with Fourier modes to produce lopsided or multi-armed spiral
structures (not shown), and with truncation function to produce an inner ring or an outer taper. The top-left panel figure, for all practical
purposes, is a pure logarithmic spiral with a winding scale radius rws = 5.

side of the truncation region (denoted by vertical dashed
lines in Figure 16).

Use of the truncation functions is highly flexible. There
can be an unrestricted number of inner and outer trunca-
tion functions for each light profile model. Furthermore,
multiple light profile models can share in the same trun-
cation functions. This is useful, for instance, when trying
to fit a dust lane (inner truncation) in a fairly edge-on
galaxy that may affect both the bulge and the disk com-
ponents. Just as with light profile models, the trunca-
tion functions can be modified by Fourier modes, bending
modes, etc., independent of the higher order modes for
the light profile they are modifying.

5.2. Different Variations of the Truncation Function

Truncation models appear in many physical contexts,
such as dust lanes, rings, spirals that do not reach the
center, joining a spiral with a bar, or cut-off of the outer
disk. To allow the truncation parameters to be more
intuitive to understand given situations at hand, Gal-
fit offers several variations. In addition to inner and
outer truncations, truncation functions can share in the
same parameters as the parent light profile. There are
radial and length/height truncations, softening radius vs.
softening length (default vs. Type 2), inclined vs. non-
inclined (default vs. Type b) truncations, and, lastly,
four different ways to normalize the flux—the most sen-
sible choice depends on how a profile is truncated. We
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Fig. 16.— Examples of hyperbolic truncation functions on n = 4 and n = 1 Sérsic profiles. (a) A continuous n = 4 model represented
as two truncated models of otherwise identical re, n, and central surface brightness, with truncation radii at r = 15 and r = 20, as marked
by the vertical dashed lines. The black curve is the sum of the inner and outer functions. This shows that, outside the truncation region,
there is very little “crosstalk” between the inner and outer components. (b) A composite profile made up of an n = 4 nucleus truncated in
the wings and an n = 1 truncated in the core, with truncation radii r = 10 and r = 20. Note that the hump in the summed model would
give rise to a ring in a 2-D model.

now discuss each of these variations in more detail.

Parameter Sharing. In the most general form, each
truncation function has its own set of free parameters:
x0, y0, rbreak, ∆rsoft, q, and θPA. However, by default, the
parameters x0, y0, q, and θPA are tied to the light profile
model, and are activated only when the user explicitly
specifies a value for them.

Radial (“radial”) vs. Length (“length”) or
Height (“height”) Truncations. The most use-
ful type of truncation is one that has radial symmetry
to first order, i.e. where it has a center, an ellipticity,
and an axis ratio. However, in the case of a perfectly
edge-on disk galaxy (“edgedisk” model), an additional
type is allowed that truncates linearly in length or in
height. For instance, a dust lane running through the
length of the galaxy has an inner height truncation. For
the “edgedisk” profile, Galfit also allows for a radial
truncation, as with all other functions. The one draw-
back to height and length truncations is that they cannot
be modified by Fourier and higher order modes like the
radial truncations.

Softening Length (“radial”) vs. Softening Radius
(“radial2”). Sometimes, instead of softening length
(∆rsoft), it is more useful for the fit parameter to be
a softening radius (rsoft), especially when one desires to
hold the parameter fixed. That is also allowed in Galfit
as a Type 2 truncation function, designated, for exam-
ple, as “radial2.” The default option does not have a
numerical suffix.

Inclined (default, “radial”) vs. Non-inclined
(“radial-b”) Truncations. A spiral rotation func-
tion is an infinitesimally thin, planar structure. Never-
theless, it should be thought of as a 3-D structure in

the sense that the plane of the spiral can be rotated
through three Euler angles, not just in position angle
on the sky. When a truncation function is modifying a
spiral model, it is therefore sometimes useful to think
about the truncation in the plane of the spiral model.
When Fourier modes and radial truncations are modi-
fying a spiral structure, the default (“radial”) is for the
modification to take place in the plane of the spiral struc-
ture. However, there are some instances when that may
not be ideal (e.g., a face-on spiral may actually be ellip-
soidal). In those situations, one can choose “radial-b”,
which would allow a truncation function to modify the
spiral structure in the plane of the sky, even though the
spiral structure can tip and tilt as needed.

Lastly, the truncation function can be Type 2b (i.e.
“radial2-b”) as well.

Flux Normalization. The most intuitive flux nor-
malization for a truncated profile is the total luminosity.
Unfortunately, both the total luminosity and the deriva-
tive of the free parameters with respect to the total lu-
minosity are especially time-consuming to work out com-
putationally and slow down the iteration process. There
are generally no closed form analytic solutions to the
problem. Therefore, the alternative is to allow for differ-
ent ways to normalize a component flux. The user may
choose whichever one is more sensible, given the situa-
tion and the science task at hand. The default depends
on the truncation type:

• Inner truncation: the flux is normalized at the
break radius. This is most sensible for a ring model
because this radius roughly corresponds to the peak
flux of the ring.

• Outer truncation: flux normalized at the center.
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Fig. 17.— Examples of truncation functions acting on a single-component light profile of various shapes. (a) Inner truncation of a
round profile, creating a ring. (b) The truncation function can be modified by Fourier modes, just like the light profile. (c) The truncation
function can be offset in position relative to the light profile. (d) The truncation function can act on a spiral model. (e) The truncation
can tilt in the same way as the spiral. (f) The truncation function can be modified by Fourier modes while acting on a spiral model. (g)
A round light profile is being truncated in the wing by a pentagonal (Fourier mode 5) truncation function. (h) A round light profile is
being truncated in the inner region by a triangular function (Fourier mode 3), and in the wing by a pentagonal function. (i) A three-arm,
lopsided, spiral light profile model is truncated in the wing by a pentagonal function, and in the inner region by a triangular function.

• Both inner and outer truncation: same as the case
for inner truncation.

However, there are many situations when the default
is not desirable. Instead, the user can choose the radius
where the flux is normalized. To be pedagogical, we ex-
plicitly show here the normalization for just the Sérsic
function:

• function : default (e.g., “sersic,” “nuker,” “king,”
etc.). See the details for individual functions.

• function1: flux normalized at the center r = 0
(i.e. Σ0). A function that is given originally by

forig(r) is now defined as fmod(r) = Σ0
forig(r)
forig(0) . For

the Sérsic profile (i.e. called “sersic1”), the profile
function is redefined in the following way, written
explicitly:

fmod(r) = Σ0

exp

[

−κ

(

(

r
re

)1/n

− 1

)]

exp [κ]
. (31)

For the Ferrer and King profiles, this normalization
is the same as the default normalization.

• function2: flux parameter is the surface brightness
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at a model’s native size parameter (parameter 4 of
the light profile model). For a Sérsic profile, called
“sersic2,” this means the effective radius re. So,

fmod(r) = Σe
forig(r)
forig(re) . For example, a Sérsic profile

now has the following explicit form:

fmod(r) = Σe exp

[

−κ

(

(

r

re

)1/n

− 1

)]

. (32)

For the Nuker profile this normalization is the same
as the default normalization.

• function3: flux parameter is the surface brightness
(Σbreak) at the break radius (rbreak). This is the
most useful situation when a truncation results in
a large-scale galaxy ring, so that the surface bright-
ness parameter corresponds closely to the peak of
the light profile model. When the truncation is
not concentric with the light profile model, this
kind of normalization is not very intuitive. For
“radial” truncation, rbreak is parameter 4, whereas
for “radial2,” rbreak is parameter 4 for outer trun-
cation and parameter 5 for inner truncation. When
the “sersic3” option is chosen, the rbreak parameter
comes automatically from the first truncation com-
ponent with which a certain light profile model is
associated.

In our example of the Sérsic profile, fmod(r) =

Σbreak
forig(r)

forig(rbreak) . For example, a Sérsic profile now

has the following explicit form:

fmod(r) = Σbreak

exp

[

−κ

(

(

r
re

)1/n

− 1

)]

exp

[

−κ

(

(

rbreak

re

)1/n

− 1

)] . (33)

Figure 17 demonstrates just some of the possibilities
allowed when fitting truncations. In addition to the reg-
ular ellipsoid shape, the higher order modes like diski-
ness/boxiness parameters, bending modes, and Fourier
modes can also modify the shape of the truncation func-
tions. One can also use the truncation function on a spi-
ral model, on models with Fourier and bending modes,
and diskiness/boxiness models, some of which are shown
in Figures 17d, 17e , 16f , and 17i . When a truncation
function acts on a spiral component, it can do so either
in the plane of the disk (“Type a”) or in the plane of the
sky (“Type b,”; e.g., “radial-b”). While the default is in
the plane of the disk, the parameters are more intuitive
in Type b cases when the disk is tilted and rotated.

5.3. Caveats about using the Truncation Function

The use of truncation functions should be carefully su-
pervised because unexpected things can happen, such
as the size or the concentration index of a component
can grow without bound. This behavior is due to the
fact that there are degeneracies between the sharpness of
truncation and the steepness/size of the galaxy. There-
fore, truncation functions should only be used on objects
that clearly have truncations.

When two functions are joined by using a truncation
function, the crosstalk region is located in between the
two truncation radii: it is worth bearing in mind the defi-
nition that at the break and softening radii, the fluxes are
99% and 1% that of the same model without truncation,
respectively. In other words, the larger the truncation
length, the larger the crosstalk region. Therefore, when
one (or more) of the parameters rbreak, rbreak + ∆rsoft,
or rsoft is either too small (. few pixels) or larger than
the image size, it probably indicates that profile trun-
cation parameters are not meaningful. Rather, it more
likely reveals the fact that there is a mismatch between
the light profile model and the actual galaxy profile.

6. INTERPRETATION, PARAMETER DEGENERACIES,
UNIQUENESS, LOCAL MINIMA, AND ERROR ANALYSIS

Now that we have introduced several ways to modify an
ellipse into more exotic shapes, a natural question to ask
is how unique or robust are the modifications. A single-
component ellipsoid fit can often be used to quantify the
global average profile of galaxies. However, beyond that,
decisions about what procedure to use get to be more
complicated. On the one hand, the science goal might
call for fitting detailed structures inside a galaxy (e.g., a
bulge, bar, nuclear star cluster, etc.). On the other hand,
doing so raises concerns about parameter degeneracies,
uniqueness, and local minima solutions when the analysis
becomes complex. It is therefore useful to consider in
some depth what causes degeneracies and the different
contexts in which they appear. Doing so allows for better
understanding for how to deal with them and how to
properly interpret results from complex analysis. For,
not all complex analyses are more suspect, nor are all
simple analyses more robust.

The term “degeneracy” has a specific mathematical
connotation, namely the relation of a + b = c is degen-
erate in a and b for a constant value of c. In the galaxy
fitting literature, “degeneracy” is often more loosely used
to also refer to “non-unique” or “local minimum” so-
lutions (e.g., a fit oriented at 90◦ from the best orien-
tation), or strong “parameter correlation” (e.g., sky is
anti-correlated with the Sérsic index n). We will mostly
not make the subtle distinctions here and instead will use
the term “parameter degeneracy” generically to refer to
all such situations.

However, when fitting galaxies, it is more important to
distinguish between the aforementioned real degeneracies
from “pseudo” ones. Real degeneracies refer to correlated
parameters, local minima, and mathematically degener-
ate solutions. By contrast, “pseudo” degeneracies involve
convergence issues when an algorithm is used beyond its
technical limits, or when users provide bad input model
priors to fit the data. They may have nothing to do
with real degeneracies, yet the behavior of convergence
may seem to suggest otherwise. Whereas problems with
real degeneracies are often resolvable by using full spatial
information of 2-D images, pseudo-degeneracy problems
are solved through experience and by using sound scien-
tific or technical judgment, as we elaborate further.

In this section, we discuss how most of the parame-
ter degeneracy problems are avoidable with proper input
priors and proper fitting supervision, even when large
numbers of free parameters are involved. We also dis-
cuss why, contrary to popular notions, when it comes to
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avoiding model degeneracy and local minima, it is not
sufficient to only choose a model that is the simplest.
Rather, it is a judicious combination of simplicity and
realism that make for the most robust solutions. Lastly,
these discussions are intimately connected to the issue
of error analysis because error measurements are nearly
always dominated by systematic issues rather than pho-
ton noise in galaxy fitting. We therefore discuss why it is
more important to quantify model-dependent systematic
errors rather than to rely on statistical estimates.

We note that the discussions below are mostly based
on experience, which we present using practical exam-
ples rather than to show using rigorous proof. Carrying
out a rigorous proof is not only beyond the scope of this
study, but it is nearly impossible to do in a general man-
ner because different scientific applications have different
sensitivities to different types of degeneracies. We are
also aware that presenting a full discussion of degeneracy
issues lends credence to the common notion that multi-
component analysis is dangerously complex. However,
the reality is not nearly so dire when one has a proper
understanding of the underlying issues and causes.

6.1. True Numerical Degeneracies Caused by Correlated
or Non-Unique Parameters

There are well-known situations when different param-
eters in one or more functions are capable of modeling
the same profile behavior. This scenario is the one most
commonly referred to in generic discussions about model
degeneracies. For instance, very large Sérsic index val-
ues (n & 4) have highly extended wings, the presence of
which is non-unique with the sky parameter. A high n,
caused by profile mismatch or poor model prior, can often
suppress the sky estimate. It is therefore advisable to es-
timate the sky independent of the fit, and to hold it fixed
to the best estimate. As a second example, in the Nuker
profile (Equation 17), there are three parameters (α, β,
and γ) that control the inner/outer slopes and sharpness
of the bending (Figure 7). When the break radius rb of
a Nuker profile is sufficiently small and profile mismatch
sufficiently large, model discrimination relies entirely on
the power law γ−β

α . Because there are numerous ways to

yield a specific value for γ−β
α in the model, it leads to a

degenerate situation involving three parameters.
As another example, a low-amplitude second Fourier

mode and the first bending mode (shear) can both be
degenerate with the axis ratio q parameter of an ellipse,
therefore they should not be used together except in
obvious situations where doing so is useful. Lastly, in
the spiral rotation function, the periodicity of the rota-
tion function can sometimes be a source of “degeneracy.”
Multiple windings can approximate a smooth continuous
model, whether or not there is a spiral structure present.
For instance, a classical Sérsic ellipsoid can be simulated
by a spiral model with a very large θout. While the fit
is not good and easy to diagnose by an end user, it is
nevertheless a numerically allowed solution.

The above situations are not meant to be a complete
laundry list, but they are the most common situations.
In complex analysis, one always needs to be circumspect
about the potential hazards of mixing and matching dif-
ferent functions whose parameters produce similar profile
behaviors. Even though Galfit allows for a great deal of

flexibility in the analysis, it is ultimately up to the user
to decide on what to allow, based on the goals of the
science, and to understand when potentially degenerate
parameters may be used effectively.

The above discussion may also seem to imply degen-
eracies or non-uniqueness are too numerous for complex
analysis to be practical or reliable. That notion is only
true when it is not possible to verify the results of a fit
and to try out other solutions. Such a scenario is more
common for large scale galaxy surveys, in which auto-
mated, detailed, analysis is admittedly quite difficult to
conduct sensibly. However, even in those scenarios, there
are many situations where mutually coupled parameters
do not affect the other main parameters of scientific inter-
est: degeneracies in the Fourier modes often do not have
any bearing on the total luminosity or size of a compo-
nent. Moreover, when an analysis is done manually, it
is reassuring that the problems are almost always easy
to recognize and remedy when they do happen, even by
simple inspection of the model and residual images.

6.2. Pseudo-Degeneracies Caused by Technical
Conditions (e.g., Model Profile Resolution,

Parameter Boundaries)

Occasionally, what appears to be numerical degener-
acy problems may be caused by someone using a code
outside the algorithm’s physical capabilities. As such,
it is a pseudo-degeneracy. Different algorithms have dif-
ferent limitations that affect convergence, whether the
code is gradient descent, Metropolis, or otherwise. This
situation may appear like parameter degeneracy because
restarting the fit does indeed yield a different solution,
but in fact the code may be hamstrung in its conver-
gence. For example, gradient descent algorithms require
the calculation of a gradient, and thus can run into prob-
lems when the gradient cannot be calculated properly. In
simulated annealing algorithms (e.g., Press et al. 1992),
parameter boundaries and annealing speed control the al-
gorithmic behavior: anneal too quickly, the solution may
settle into a local minimum. To search larger parameter
spaces requires longer annealing times.

While all algorithms have conditions under which they
perform poorly, pseudo-degeneracies can always be rec-
ognized and mitigated. Galfit is based on a Levenberg-
Marquardt subroutine that performs the least-squares
minimization. In part a gradient descent algorithm, the
convergence behavior is affected by the calculation of gra-
dient images that determines the direction of steepest χ2

descent. When the gradient images are problematic, they
affect the convergence to a proper solution. There are
three main problematic situations. The first, and most
common, occurs when a model becomes extremely com-
pact (FWHM . 0.5 pixel), so that the profile gradient
cannot be resolved: all the gradient information in the
model fits into a single pixel. This situation mostly arises
when working with high-contrast imaging data, such as
quasar host galaxy decomposition, when one of the sub-
components may be used to reduce the strong residuals
caused by a PSF mismatch. A similar situation arises
when a model is very thin (axis ratio q . 0.05) and the
object is compact; here, the gradient does not exist along
one spatial direction because of a lack of pixel resolution.
Another rare example occurs when the inclination angle
of a spiral rotation component is close to perfectly face-on
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(θincl → 0 in Equations 28 and 29), when the derivative
image for the inclination parameter approaches zero.

Another abnormal numerical behavior may occur when
one places parameter constraints on a model to prevent
some parameters from wandering too far from their ini-
tial values. Doing so may cause poor convergence by
forcing the solution into a tight “corner,” when the best
solution is somewhere beyond it. A typical situation is
where there are other sources in the image that are not
masked or fitted by models, but that are sufficiently lu-
minous to influence the fit of the target of interest. In
this situation, no amount of effort will produce a sensi-
ble solution, because the best solution is outside of the
parameter boundaries, even though the desired solution
may be within. Pseudo-degeneracies occur in this situ-
ation both because there is an abnormal condition im-
posed and because the input prior for the model is poor.

While technical issues with code operation add a layer
of complexity to image analysis, in practice the majority
of situations one encounters are straightforward to recog-
nize by observing when the parameters take on extremely
large or small values. However, clearly recognizing the
problem as being pseudo degeneracies is the key. Once
diagnosed, these situations are easy to guard against,
by holding those parameters fixed when they go below
certain values. In practice, technical issues are not prob-
lematic even when Galfit is used for automated analysis
(Häussler et al. 2007) 7.

6.3. Pseudo-Degeneracies Caused by Bad Input Model
Priors

One of the most common causes of degeneracy prob-
lems in galaxy fitting analysis comes from using input
priors that are not well suited to the data. The most
common “input priors” involve the choice of the type or
the number of components in a model8. Input priors are
ideal when the number of components of a model used
in a fit matches the number of luminous components in
a galaxy. However, often times one may choose to use ei-
ther fewer or more components than needed by the data.

A common example where the input prior is bad is
when one uses fewer model components than called for
by the data. Two of the main reasons for doing so are to
reduce the number of components/free parameters, or to
allow automated analysis, where it is not yet possible to
tailor fits to individual galaxies. This approach is often
an intentional course of action taken by many studies,
especially when it comes to automating two component
analysis; the goal, ostensibly, is to decompose a galaxy
into bulge and disk components. Seemingly reasonable
and justifiable on the notion of reducing the potential for
degeneracy, the approach is generally regarded by most
people to be a positive attribute, rather than a source
of problem itself. Yet, that intuitive notion conflicts
with the basic principle of how least squares algorithms
work, and leads to perhaps the most common causes of
(pseudo-)degeneracy problems cautioned by literature.

7 While these conditions can always be anticipated in advance,
implementing a solution in the code is more tricky, because the act
of doing so may also induce other convergence difficulties. This
leads to a false sense of security about the robustness of a solution.

8 An input prior does not refer to the accuracy of the initial
parameter guesses.

To understand why using fewer components than nec-
essary is bad, it is important to appreciate that galaxy fit-
ting analysis is fundamentally flux weighted. Thus, when
a luminous structure is not accounted for, other subcom-
ponents try to compensate, however imperfectly, for its
presence. For instance, one may use a two-component
model fit to a galaxy that has a bulge, disk, and bar.
Doing so may have several different outcomes. One solu-
tion is where one component is a sum of (disk+bar) while
the other is the bulge. Another can be (bulge+bar) and
disk, or perhaps a compromise (e.g., bulge + 0.7 bar; disk
+ 0.3 bar). Which scenario occurs depends on the rela-
tive contrast (i.e. flux weighting) of the bar to the bulge
and disk, and potentially on the initial parameters of the
three components; small perturbations may “bump” the
solution out from one minimum into another. It is quite
possible for there to be a “global minimum” solution to
this problem. However, when the most meaningful solu-
tion, physically, is simply dis-allowed by the input prior,
a globally minimum χ2 cannot lend much credence to the
reality of the model components.

An input model prior might also be bad if the model
involves using more subcomponents than inherently
present in a galaxy. In this situation, the results de-
pend strongly on the degree of profile mismatch between
the model function and the data. If there is significant
mismatch, all the components cooperate to reduce the
residuals. For instance, it is always possible to fit mul-
tiple exponential models to a single-component de Vau-
couleurs profile. If the goal is to obtain the total flux,
the sum would do a better job than using a single expo-
nential. However, individually, the structural parameters
may not have much physical meaning.

Another example involving model prior is in the area
of high-contrast imaging, where the goal is to deblend
a central, unresolved, point source from a diffuse under-
lying object (e.g., quasar and host galaxy). To do so
reliably requires an accurate PSF model for the unre-
solved source, or else the residuals may overwhelm the
extended object, causing unreliable fits. Here, the prior
is the PSF model. Quantifying how the prior affects the
fitting results involves trying out different PSFs, or to in-
clude extra components to account for the PSF residuals,
depending on the science goal.

These examples illustrate some of the most common
situations where the reliability of a fit depends less on the
number of free parameters, and more on having a proper
model to describe the data. Beyond a single-component
analysis, the need to make such a decision means that
it will be difficult to automate highly detailed decompo-
sitions of galaxies. However, while multi-subcomponent
fitting is difficult to automate, it is reassuring that mak-
ing a wise decision, interactively, is often not particularly
difficult when a science goal is clearly defined. More-
over, for galaxy surveys, where the goal is to fit single-
component profiles to galaxies, multi-object decomposi-
tion is quite feasible to automate (e.g., M. Barden et al.
2009, in preparation; Häussler et al. 2007).

In summary, pseudo-degeneracy conditions exist be-
cause least-squares fitting fundamentally involves flux
weighting: when luminous flux distributions are present
in an image, the models are attracted toward them to
reduce the residuals. Therefore, when all components
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are not properly modeled, the result may be tricky to
interpret not because of potential for model degenera-
cies, but that the solution may have no physical meaning
even if there is a global minimum. The solution is to in-
crease the complexity of the analysis progressively until
all luminous components are properly accounted. This
process does not imply, however, that it is necessary to
account for every component inside a galaxy for the so-
lution to have any meaning, only that components of
similar flux ratios ought to be simultaneously accounted
in detailed analysis; with a few exceptions (e.g. locally
dominant features like nuclear star cluster, nuclear ring),
components with low fluxes generally do not significantly
disturb the parameters of the much more luminous sub-
components.

6.4. Parameter Degeneracies Can be Broken by Spatial
Information in 2-D

One of the most common notions regarding fitting de-
generacy is that the more free parameters there are the
greater is the potential for degeneracy problems. How-
ever, the sheer number of parameters is often not itself an
indication of a potential for parameter crosstalk. Con-
sider, for instance, that it is equally robust to fit thou-
sands of well-separated stars as it is to fit an isolated
one. The same is true for galaxies, even though they are
considerably more extended and may overlap: in large-
scale image simulations, Häussler et al. (2007) studied
automated batch analysis of galaxies using one Sérsic
profile per galaxy. They find that simultaneously fitting
overlapping or neighboring objects using multiple com-
ponents (often 3–10 Sérsic models at a time) recovers the
input simulated parameters more accurately than fitting
a galaxy singly while masking out the neighbors.

Indeed, spatially well-localized sources, like a bar, ring,
or off-nuclear star clusters, are virtually free from degen-
eracies caused by crosstalk with other components. A
galaxy bar is well determined because it is more elon-
gated, has a flatter radial profile, and is more sharply de-
fined than the surrounding bulge and disk components,
despite being embedded within. Compact objects that
are off-centered may also be well determined if the rest
of the galaxy can be modeled accurately. Contrary to
notions that more model components lead to greater de-
generacy, it is important to consider the qualitative as-
pects of those components: not accounting for strong
features explicitly can yield a less reliable and less physi-
cally meaningful fit because the solution is a compromise
between the different subcomponents.

6.5. Measurement Uncertainties, Parameter
Correlation, and Parameter Degeneracies

The issue of parameter degeneracies closely ties into
the topic of measurement uncertainties, especially when
the result of the analysis may depend on the input model
in fitting galaxies. When the model fits the data perfectly
(i.e. the residuals are only due to Poisson noise) it is
possible to infer parameter uncertainties from the covari-
ance matrix of free parameters, which is produced during
least-squares minimization by the Levenberg-Marquardt
algorithm. In galaxy fitting, ideal situations are often
not realized because the differences between the data and
the model profile involve not only random (e.g., Poisson)
sources, but also systematics from non-stochastic (e.g.,

profile function or shape mismatch, neighboring galax-
ies, etc.), and stochastic factors (overall smoothness, for
instance due to star clusters). The one exception is under
low signal-to-noise (S/N) situations, when Poisson noise
exceeds model imperfection. In most other situations,
non-random factors dominate the residuals, causing un-
certainties inferred from covariance matrices to be un-
derestimated. Therefore, it is frequently not very mean-
ingful in galaxy fitting to cite measurement uncertainties
for the fitting parameters in the traditional sense.

One way to quantify uncertainties, possible in large
galaxy surveys, is to allow the scatter of the data points in
physical relations (e.g., radius vs. luminosity, luminosity
vs. metallicity, etc.) to articulate the overall uncertainty
of the measurements, even if individual errors could not
be easily obtained. Such a scatter inherently involves a
convolution of several error sources: the intrinsic scatter
present in a physical relation, Poisson measurement er-
ror, stochastic and non-stochastic systematic errors due
to model imperfections. Intrinsic scatter, being a fact
of nature, remains present in physical relationships even
should the data have infinite S/N, and even if the models
are perfect fits to the data. Intrinsic scatter is often a sci-
entifically interesting quantity, but it is difficult to differ-
entiate from scatter caused by systematic and stochastic
errors, which do not vanish given infinite S/N.

In the absence of large galaxy surveys, it is then impor-
tant to quantify stochastic and non-stochastic systematic
errors for individual objects. Some example situations
include the black hole mass vs. galaxy relation stud-
ies (Kormendy & Richstone 1995; Gebhardt et al. 2000;
Ferrarese & Merritt 2000) and the fundamental plane
(Djorgovski & Davis 1987).

In general it is very difficult to pin-point all the causes
of non-stochastic systematic errors in an analysis, and to
quantify their magnitude. However, one common cause
is profile model mismatch: to the extent that one does
not know the intrinsic model of a galaxy a priori, the un-
certainty in measuring the parameters is wedded to one’s
assumptions about the model. Therefore, the process of
quantifying systematic, model-dependent errors involves
exploring the degree of parameter coupling, by trying
out different models and seeing how the parameters of
key scientific interest change. Another source of system-
atic error is due to comparing results from different al-
gorithms. In this scenario, the most sensible practice is
therefore to only compare parameters that are derived
using the same fitting technique (rather than 1-D vs. 2-
D), and using the same pixel and flux weighting scheme
(instead of Poisson vs. non-Poisson) during analysis.

In contrast, stochastic errors arising from general non-
smoothness of a galaxy profile are caused by, for example,
star forming patches, dust lanes, etc.. Existing on small
scales and widely dispersed, non-smoothness cannot by
easily identified and modeled in a practical manner using
multiple components. Even if it is possible to do so,
whether they ought to be fitted explicitly, masked, or not
treated at all, falls under the purview of the science goal.
Stochastic fluctuations often influence the analysis in a
manner analogous to having large correlated noise in the
data. If the fluctuations can be quantified, one possible
solution is to include them in the fit as a variance term
of χ2 (Equation 1). To estimate the fluctuations requires
first obtaining a smooth underlying model, which is not
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always easy to do if galaxies have steep and/or irregular
profiles.

While it is generally difficult to disentangle stochastic
from non-stochastic sources of systematic errors, there
also do not seem to be obvious benefits for doing so from
a scientific standpoint. For most applications, one should
only be interested in the overall magnitude of the sys-
tematic errors in a collective sense. One way forward
is therefore to understand which parameters are most
strongly coupled, then compare the results of different
solutions judging by which ones are physically plausible.
For instance, one common interest in bulge-to-disk de-
composition is to quantify the uncertainty of the Sérsic
index n. We know that the Sérsic index n takes on a
large value when a profile has both a steep core and an
extended wing (see Figure 3). Therefore, quantifying sys-
tematic errors in measuring the Sérsic n might involve
masking or fitting nuclear sources/neighboring contami-
nation, trying out different PSFs, or fitting the disk by
allowing for different disk Sérsic index values. Properly
judging the causes of systematic errors and accounting
for them often would lead to more natural fits and more
sensible parameter values, without the need to hold cer-
tain parameters fixed to preconceived answers.

In exploring the parameter space as described, there
is often a concern that parameter degeneracies are too
numerous or problematic to understand, which brings
the discussion back full circle. As discussed in previ-
ous sections, when the cause of parameter degeneracy is
properly identified, and when the model priors are well
conceived, our experience has been that spatial informa-
tion in 2-D can often effectively break many potential
degeneracies between the components. Even when the
size, luminosity, and central concentration, of the dif-
ferent components correlate they often interact in fairly
superficial ways, and do not dramatically change what
the model components represent physically. However,
in situations where cross-talk is significant and there is
no reason to prefer one solution over another (when the
input prior is befitting), then differences in the answer
speak to the degree of the parameter uncertainty that is
of key interest to quantify, rather than to avoid, because
ultimately the models are empirically motivated.

In summary, to the extent that the results may de-
pend on model assumptions, parameter exploration is
the only viable way to quantify true measurement errors
in the fit parameters. Thus, when used properly, param-
eter coupling/degeneracy, rather than complicating the
interpretation, offers a deeper insight into the reliabil-
ity of the overall analysis. We illustrate the above ideas
more explicitly in the following examples.

7. EXAMPLES OF DETAILED DECOMPOSITION

To demonstrate how to use the new features to ex-
tract complex structures, we analyze five galaxies that
are well resolved: IC 4710, an edge-on disk galaxy, Arp
147, M51, and NGC 289. These galaxies are chosen be-
cause they represent examples where traditional analysis
using perfectly ellipsoid models tend to leave some ques-
tion as to what is physically being measured and to the
robustness of the photometry and decomposition. The
primary purpose here is to illustrate the basic building
blocks of galaxy morphology, not to address what are the

most “scientifically interesting” or useful applications—
the scope of which is far too broad to address. As such,
each individual example is not intended to necessarily be
“interesting” in its own right. For instance, while param-
eterizing a ring galaxy like Arp 147 may not itself be too
worthwhile scientifically, the concept has other relevance
to deblending Einstein rings from lensing galaxies in the
image plane of strong gravitational lenses, or separat-
ing a ring from a bulge, disk, and bar in spiral galaxies.
Indeed, these are heuristic examples meant to generate
new ideas for potentially interesting applications, and to
illustrate the dynamic range of capabilities in our new
approach.

Another goal of this section is to illustrate two seem-
ingly contradictory notions when it comes to galaxy mor-
phology analysis:

• Sometimes it is not necessary to perform “full-
blown” analysis, including spiral structures,
Fourier modes, rings, etc.. The detailed analysis
below will show when it is not necessary to utilize
the full machinery in order to meet the science
requirements, such as when the interest is to only
quantify global properties. However...

• Sometimes it is necessary to perform full-blown
analysis. In situations where detailed decomposi-
tion matters (e.g., quantifying bulge-disk-bar frac-
tions) the most reliable analysis is to make full use
of the machinery available.

Indeed, the availability of new tools does not in any
way invalidate or weaken the conclusions of hundreds of
studies that came before this one—quite the contrary.
Rather, the main message is that given the new capabil-
ities, it is more important now than ever to weigh the
relative benefits of sophistication against the drawback
of increased difficulty and time, whereas no such options
existed before.

7.1. IC 4710

IC 4710 is an SB(s)m galaxy, which has a bar-like
feature in the middle of a roundish outer structure, as
shown in the R-band image of Figure 18, which comes
from the CINGS (Carnegie-Irvine Nearby Galaxy Sur-
vey) project9. Prior to the analysis, we masked out the
stars using the SExtractor software (Bertin & Arnouts
1996). We analyze this galaxy using, for comparison,
both one- and two-component regular and higher order
models with Fourier modes, shown in Figures 18b-i. The
best-fit parameters are given in Table 1, which illustrates
three different sets of analysis parameters: best fit using
two components (Figure 18c), a model using just the tra-
ditional ellipsoid component (Figure 18g), and the same
single-component model with Fourier modes added (Fig-
ure 18b). Figure 18i shows the radial surface brightness
profile of the data and the individual subcomponents of
the best model.

There are several points to understand from comparing
detailed and simple analyses. The best-fitting ellipsoid
model (Figure 18g) is oriented more parallel to the bar-
like, higher surface brightness component than the lower

9 http://users.obs.carnegiescience.edu/lho/projects/CINGS/CINGS.html
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Fig. 18.— Detailed analysis of IC 4710. (a) Original data. (b) Best single-component Sérsic profile fit with Fourier modes m = 1
to m = 10. (c) Best two-component Sérsic profile fit each with Fourier modes, corresponding to the parameters shown in Table 1. (d)
Best-fit residuals. (e) Component 1 of 2 in the best-fit model of Panel (c). (f) Component 2 of 2 in the best-fit model. (g) A traditional
single-component ellipsoid fit. (h) Residuals from the model in Panel (g). (i) 1-D surface brightness profile. The individual components are
shown as dashed lines, and the solid line coursing through the data is the sum of the two components. The lower panel shows the residuals
of data − model.
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Table 1. IC 4710 Fitting Results

# — sersic — ∆x [′′] ∆y [′′] mag re [′′] n q θPA [deg] Comments
fourier — mode: ampl. & phase [deg] mode: ampl. & phase [deg] mode: ampl. & phase [deg]

Best fit 1 — sersic — 0.00 0.00 13.71 48.92 0.55 0.32 −63.36
0.16 0.08 0.00 0.17 0.00 0.00 0.07

Inner fourier — 1: 0.16 1: −97.40 3: 0.17 3: −17.95 4: 0.06 4: 17.67
component — 1: 0.00 1: 1.18 3: 0.00 3: 0.21 4: 0.00 4: 0.32

fourier — 5: 0.05 5: 18.37 6: −0.06 6: 13.22 7: 0.03 7: −1.20
— 5: 0.00 5: 0.34 6: 0.00 6: 0.23 7: 0.00 7: 0.63

fourier — 8: 0.05 8: 10.92 9: 0.01 9: 4.55 10: 0.03 10: −6.68
— 8: 0.00 8: 0.17 9: 0.00 9: 1.63 10: 0.00 10: 0.29

Outer 2 — sersic — 1.97 26.28 12.49 57.24 0.37 0.90 41.38
Component 0.24 0.19 0.00 0.09 0.00 0.00 0.85

fourier — 1: −0.31 1: −39.25 3: 0.03 3: 55.46 4: 0.03 4: −27.65
— 1: 0.00 1: 0.86 3: 0.00 3: 1.31 4: 0.00 4: 0.89

fourier — 5: 0.04 5: −15.73 6: 0.02 6: −12.47 7: 0.01 7: 16.56
— 5: 0.00 5: 0.87 6: 0.00 6: 1.15 7: 0.00 7: 1.74

fourier — 8: −0.03 8: −13.49 9: 0.01 9: −19.63 10: 0.02 10: −15.64
— 8: 0.00 8: 0.86 9: 0.00 9: 0.91 10: 0.00 10: 0.92

merit χ2 = 167438.77 Ndof = 127966 Nfree = 53 χ2
ν = 1.31

Single 1 — sersic — 0.00 0.00 12.15 60.37 0.69 0.82 −63.51
component 0.06 0.05 0.00 0.12 0.00 0.00 0.31

merit χ2 = 247304.81 Ndof = 128009 Nfree = 10 χ2
ν = 1.93

Single 1 — sersic — 0.00 0.00 12.15 59.00 0.69 0.83 −64.43
component 0.12 0.09 0.00 0.09 0.00 0.00 0.24

with fourier — 1: −0.05 1: 72.02 3: −0.07 3: 27.55 4: −0.02 4: −7.37
Fourier — 1: 0.00 1: 2.39 3: 0.00 3: 0.31 4: 0.00 4: 0.48
modes fourier — 5: 0.02 5: 5.54 6: −0.01 6: −7.72 7: −0.02 7: 15.40

— 5: 0.00 5: 0.54 6: 0.00 6: 0.80 7: 0.00 7: 0.33
fourier — 8: 0.01 8: 0.28 9: 0.01 9: 3.16 10: −0.02 10: 1.12

— 8: 0.00 8: 0.50 9: 0.00 9: 0.63 10: 0.00 10: 0.25
merit χ2 = 235140.44 Ndof = 127991 Nfree = 28 χ2

ν = 1.84

Note. — Best-fitting parameters for IC 4710. The meaning of the object parameters is shown at the top for each model component. The
statistical uncertainties for each model component, based on the covariance matrix of the fit, are shown in the row underneath the best-fitting
model parameters. Systematic uncertainties due to imperfect model-data match are typically 1%–10% for the fluxes, 10%–20% for the sizes, and
20%–30% for the Sérsic index. For the Fourier modes, the phase angle is relative to the major axis of the light profile component. Note that the sky
parameters are not shown. The “Best fit” parameters (top section) correspond to Panel (c) in Figure 18, “Single component” parameters (middle
section) correspond to Panel (g), and “Single component with Fourier modes” parameters (bottom section) correspond to Panel (b).
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surface brightness body; however, the ellipsoid model is
much broader than the bar (Figure 18e). This happens
because a single-component fit is a compromise between
the various subcomponents of a galaxy, and, as such, it
reflects neither one perfectly. Allowing the azimuthal
shape to change by adding 9 Fourier modes results in
a shape shown in Figure 18b. Note that because the
profile is restricted to having a Sérsic functional form in
every direction radially from the peak, the shape does
not have complete freedom to take on any shape, as op-
posed to a shapelet or wavelet-type Fourier inversion: it
is merely a higher order perturbation of the best-fitting
ellipse. Indeed, in comparing single-component fit pa-
rameters in Table 1 for the two models, the main Sérsic
structural parameters hardly budged, despite the Fourier
model having 18 more free parameters. Therefore, the
marginal returns in using more free parameters is negli-
gible in this situation when it comes to the main Sérsic
structural parameters. However, if the scientific interest
is to quantify the global symmetry, then the higher order
modes are of interest.

Another point of interest is how higher order models
affect the accuracy of the global photometry. It is nat-
ural to expect when a model is unrealistic for a galaxy
that the photometry is also unreliable. In Figure 18c,
it is evident that a two-component model is more ap-
propriate than the single-component fits of Figure 18b
and 18g. However, when the flux of the two-component
model is summed, one finds that the difference with the
single-component fits is only 0.03 mag. This and subse-
quent examples illustrate empirically that the process of
least-squares minimization using even näıve ellipsoids is
often capable of providing accurate photometry to within
0.1 to 0.2 mag, even if the galaxy shape departs from el-
lipsoid models quite drastically.

Lastly, Figures 18e and 18f demonstrate that it is quite
feasible to unambiguously disentangle embedded com-
ponents that have different shapes, using higher order
Fourier modes. Despite there being a large number of
parameters, it is visually clear based on Figures 18e and
18f that parameter degeneracy is not an issue, because
the shapes of the components are quite different. In part,
this is possible because of how Fourier modes are imple-
mented in Galfit: the profile function is preserved in
every direction radially from the peak, even in situations
where the shape is irregular, as in Figure 18e.

7.2. GEMS Edge-on Galaxy

This edge-on galaxy (Figure 19, Table 2) comes from
the GEMS (Galaxy Evolution from Morphology and
SED, (Rix et al. 2004)) project, which is an HST imag-
ing survey of the Chandra Deep Field-South. Belying
a benign morphological appearance is a dust lane (Fig-
ure 19e) that courses through the center, complicating
the traditional ellipsoid fitting technique.

The analysis of even this simple object can be quite
involved. The best-fitting model involves three compo-
nents: a fairly compact bulge, an edge-on disk compo-
nent, and an puffy stellar halo enveloping both. Since the
halo component is more luminous than the bulge compo-
nent, a two-component model fit would naturally ascribe
the halo component to the bulge, despite there being a
distinctly rounder component at the center. Like the
previous example, each of the three components (Fig-

ure 19f-h) is modified by Fourier modes. Furthermore,
the best fit includes an actual model for the dust lane
(component 4, Table 2). The dust lane is modeled by an
inner truncation function as discussed in Section 5.

A truncation model is shown as a model “component”
in the fit; it is unique because it is not a light profile
model, and one cannot generate an image to see what it
looks like. Instead, its influence is to be seen on all the
light profile models (i.e. components 1–3; Figure 19f-h),
where it reduces the light by the same fraction for all
components. In every other way, the truncation function
behaves exactly like a light profile model: it can have its
own centroid (or not), and it can be modified by Fourier
modes, as shown in Table 2. The benefit of using a single
truncation model for all three light profile models is not
only to reduce the degrees of freedom, but it is also phys-
ically motivated because foreground dust attenuates all
background light sources by an equal fractional amount.
Nevertheless, if desired, it is also possible to allow each
component to be attenuated differently.

This example also demonstrates how the result of the
analysis depends on the input prior of the model. In the
fit using traditional ellipsoid parameters, a mask is used
to minimize the effect of the dust on the analysis. Yet,
the effects cannot be completely removed. As shown in
Table 2, the inclusion of the truncation model can sig-
nificantly affect the structural parameters: the surface
brightnesses can differ by 0.8 mag arcsec−2, and the sizes
by 10%–20%, even in this seemingly uncomplicated situa-
tion. Moreover, the differences far surpass the statistical
uncertainties shown in Table 2. To the extent that it is
not possible to judge which model is more physically cor-
rect, both measurements ought to be treated as equally
valid. In that situation, the uncertainties, due entirely
to model assumptions, are roughly ∼ 0.4 mag in surface
brightness and ∼ 10% in size.

7.3. Arp 147

The HST/F814W image of the field Arp 147 contains
two ring galaxies (Figure 20, Table 3), one of which has
a bulge-like component with a tidally disturbed outer re-
gion (Galaxy 1), and the other is a pure ring (Galaxy 2).
The best-fitting model for Galaxy 2 is a single-component
ring, modified by Fourier modes, as seen in Figure 20b,
whereas Galaxy 1 requires two ring components, a bulge,
and an inner fine-structure component (Figures 20e-h).
The fine-structure component of Galaxy 1 can be easily
seen in the surface brightness profile as an upturn within
r = 0.′′2 of Figure 20i (left). In addition, the tidal com-
ponent is slightly bent, which is modeled elegantly using
the bending modes of Equation 27. As in the case of
a dust lane, the ring model comes about by truncating
the inner region of a pure Sérsic profile (see Section 5.
The only difference here is that the truncation radii are a
larger fraction of the galaxy size. Whereas for the edge-
on galaxy, it makes more sense to normalize the flux at
the effective radius (Equation 32), for ring galaxies, nor-
malizing the flux at the break radius (Equation 33) is
more intuitive, because it is closer to the peak of the
profile model. In fact, the peak of the ring is about half-
way between rbreak and rbreak + ∆rsoft, but the exact
location depends on the profile type.

It is again instructive to compare a traditional fit us-
ing simple Sérsic ellipsoid models (Table 3, bottom) with
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Fig. 19.— Detailed analysis of an edge-on disk galaxy from GEMS. (a) Original data. (b) Best two-component Sérsic profile fit each with
Fourier modes, corresponding to the parameters shown in Table 2. (c) Best-fit residuals. (d) The fit residuals using traditional (i.e. purely
ellipsoid) models without masking the dust lane. (e) Residuals after subtracting the best traditional models, masking out the dust lane.
(f) The bulge component of the best-fit model. (g) The edge-on disk component of the best-fit model. (h) The extended halo component
of the best-fit model. (i) 1-D surface brightness profile. The individual components are shown as dashed lines, and the solid line coursing
through the data is the sum of the different components. The lower panel shows the residuals of data − model.
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Table 2. GEMS Disk Galaxy Fitting Results

# — sersic2 — ∆x [′′] ∆y [′′] mag/arcsec2 re [′′] n q θPA [deg] Comments
fourier — mode: ampl. & phase [deg] mode: ampl. & phase [deg] mode: ampl. & phase [deg]

# — radial — ∆x [′′] ∆y [′′] — rbreak [′′] ∆rsoft q θPA [deg]

Best 1 — sersic2 / — 0.00 0.00 19.80 0.40 1.60 0.72 44.00 Trunc. by comp.
fit 0.00 0.00 0.01 0.00 0.01 0.00 0.16 inner: 4

fourier — 1: −0.04 1: −92.16 3: −0.00 3: −51.36 4: 0.03 4: −6.61
— 1: 0.00 1: 3.23 3: 0.00 3: 30.65 4: 0.00 4: 0.53

fourier — 5: −0.01 5: −5.74 6: 0.01 6: −7.31 — —
— 5: 0.00 5: 2.35 6: 0.00 6: 1.74 — —

2 — sersic2 / — {0.00} {0.00} 22.19 2.29 0.85 0.31 41.30 Trunc. by comp.
{0.00} {0.00} 0.02 0.01 0.01 0.00 0.03 inner: 4

fourier — 1: −0.04 1: −24.97 3: 0.02 3: 26.37 4: −0.02 4: −0.04
— 1: 0.00 1: 1.82 3: 0.00 3: 1.03 4: 0.00 4: 0.79

fourier — 5: 0.00 5: 6.19 6: −0.01 6: 6.62 — —
— 5: 0.00 5: 5.63 6: 0.00 6: 1.35 — —

3 — sersic2 / — {0.00} {0.00} 23.92 4.45 1.08 0.49 41.06 Trunc. by comp.
{0.00} {0.00} 0.03 0.05 0.02 0.00 0.10 inner: 4

fourier — 1: 0.04 1: 4.59 3: 0.01 3: −3.37 4: −0.01 4: 40.55
— 1: 0.00 1: 1.16 3: 0.00 3: 1.99 4: 0.00 4: 3.94

fourier — 5: 0.01 5: −7.19 6: −0.01 6: −3.25 — —
— 5: 0.00 5: 1.40 6: 0.00 6: 0.73 — —

4 — radial — 0.02 −0.14 — 1.48 1.48 0.09 41.38 Truncates comp.
0.00 0.00 — 0.01 0.02 0.00 0.05 inner: 1 2 3

fourier — 1: −0.12 1: −156.83 3: 0.10 3: −20.62 4: 0.19 4: 9.20
— 1: 0.00 1: 1.23 3: 0.00 3: 0.52 4: 0.00 4: 0.15

fourier — 5: 0.10 5: 2.17 6: 0.14 6: 6.62 — —
— 5: 0.00 5: 0.19 6: 0.00 6: 0.10 — —

merit χ2 = 1474348.38 Ndof = 1435846 Nfree = 64 χ2
ν = 1.03

Tradit. 1 — sersic2 — 0.00 0.00 19.98 0.38 1.32 0.74 42.75
ellipsoid 0.00 0.00 0.00 0.00 0.01 0.00 0.31
model 2 — sersic2 — {0.00} {0.00} 22.78 2.57 0.85 0.25 41.21
with {0.00} {0.00} 0.03 0.02 0.01 0.00 0.06
dust 3 — sersic2 — {0.00} {0.00} 23.12 3.34 1.77 0.49 41.30

masking {0.00} {0.00} 0.04 0.04 0.03 0.00 0.08
merit χ2 = 1478767.62 Ndof = 1434511 Nfree = 18 χ2

ν = 1.03

Note. — Best-fitting parameters for an edge-on disk galaxy in GEMS. See Table 1 for details. The curly braces ({...}) around parameters
indicate that they are coupled relative to the first component. Note that the flux amplitude of sersic2 is normalized to the surface brigtness at re,
as defined in Equation 32. The “Best fit” parameters (top section) correspond to Panel (b) in Figure 19, “Traditional ellipsoid model” parameters
(bottom section) produce residuals shown in Panel (c), and the model is not shown.
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Fig. 20.— Detailed analysis of Arp 147. (a) Original data. (b) Best Sérsic profile fits of the two galaxies, all with Fourier modes,
corresponding to the parameters shown in Table 3. (c) Best-fit residuals. (d) The fit residuals using traditional, i.e. axisymmetric
ellipsoidal model components. (e) The bulge component of the right-hand galaxy in Panel (b). (f) The inner fine-structure component of
the best-fit model. (g) The ring component of the best-fit model. (h) The extended tidal-feature-like component of the best-fit model. (i)
1-D surface brightness profile of the two galaxies. The individual components are shown as dashed lines, and the solid line coursing through
the data is the sum of the different components. The lower panel shows the residuals of data − model.
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Table 3. Arp 147 Fitting Results

# — sersic — ∆x [′′] ∆y [′′] mag re [′′] n q θPA [deg] Comments
# — sersic3 — ∆x [′′] ∆y [′′] mag/arcsec2 re [′′] n q θPA [deg]

fourier — mode: ampl. & phase [deg] mode: ampl. & phase [deg] mode: ampl. & phase [deg]
bending — mode: amplitude [′′] mode: amplitude [′′] mode: amplitude [′′]

# — radial — — — — rbreak [′′] ∆rsoft q θPA [deg]

Galaxy 1 1 — sersic — 0.00 0.00 15.49 1.26 0.47 0.50 194.70 Bulge.
0.00 0.00 0.00 0.00 0.00 0.00 0.05 Inner fine

2 — sersic — 0.07 0.13 17.39 0.35 0.43 0.60 150.75 structure.
0.00 0.00 0.01 0.00 0.01 0.00 0.39

3 — sersic3 / — −0.08 0.33 23.84 1.21 0.96 0.18 187.42 Trunc. by comp.
0.01 0.03 0.02 0.02 0.01 0.00 0.03 inner: 5 (ring).

fourier — 1: 0.03 1: 49.11 3: 0.02 3: 15.69 4: 0.04 4: 4.24
— 1: 0.00 1: 9.08 3: 0.00 3: 1.04 4: 0.00 4: 0.45

4 — sersic3 / — 0.09 −0.34 22.04 3.81 1.94 0.42 184.08 Trunc. by comp.
0.01 0.02 0.01 0.04 0.03 0.00 0.04 inner: 5 (Tidal

fourier — 1: 0.16 1: 21.49 3: 0.09 3: 18.36 4: −0.01 4: 16.13 feature).
— 1: 0.00 1: 0.82 3: 0.00 3: 0.17 4: 0.00 4: 1.55

bending — 2: −0.14 — — — — —
— 2: 0.00 — — — — —

5 — radial — — — — 10.94 6.00 0.18 187.61 Truncates comp.
— — — 0.02 0.06 0.00 0.03 inner: 3 4

fourier — 1: 0.05 1: 39.00 3: 0.02 3: 19.88 4: 0.04 4: 3.88
— 1: 0.00 1: 4.97 3: 0.00 3: 1.18 4: 0.00 4: 0.39

Galaxy 2 6 — sersic3 / — −18.29 −7.93 22.14 0.78 1.85 0.79 187.91 Trunc. by comp.
0.01 0.01 0.00 0.01 0.01 0.00 0.12 inner: 7 (Ring)

fourier — 1: 0.23 1: −113.97 3: 0.07 3: 15.27 4: −0.02 4: 23.33 magtot = 14.90
— 1: 0.00 1: 0.53 3: 0.00 3: 0.12 4: 0.00 4: 0.39

7 — radial — — — — 10.77 6.08 0.82 195.16 Truncates comp.
— — — 0.01 0.01 0.00 0.19 inner: 6

fourier — 1: 0.17 1: −149.22 3: 0.07 3: 4.98 4: 0.02 4: −31.52
— 1: 0.00 1: 0.99 3: 0.00 3: 0.17 4: 0.00 4: 0.38

merit χ2 = 714735.38 Ndof = 357760 Nfree = 77 χ2
ν = 2.00

Tradit. 1 — sersic — 0.00 0.00 15.33 1.07 0.90 0.62 193.49 Bulge.
ellipsoid 0.00 0.00 0.00 0.00 0.00 0.00 0.11
model 2 — sersic — −0.12 0.55 14.86 6.63 0.43 0.34 184.20 Disk.

0.00 0.01 0.00 0.01 0.00 0.00 0.04
Galaxy 2 3 — sersic — −15.61 −8.66 15.09 8.28 0.12 0.80 201.65 Ring

0.01 0.01 0.00 0.01 0.00 0.00 0.29 galaxy.
merit χ2 = 1435193.25 Ndof = 357813 Nfree = 24 χ2

ν = 4.01

Note. — Best-fitting parameters for Arp 147. See Table 1 for details. Note that the flux amplitude of sersic3 is normalized to the surface
brigtness at rbreak, as defined in Equation 33, whereas sersic magnitude means the total flux. The “Best fit” parameters (top section) correspond
to Panel (b) in Figure 20, “Traditional ellipsoid model” parameters (bottom section) produce residuals shown in Panel (d), and the model is not
shown. The free parameters for the sky are not listed.
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more sophisticated analysis (Table 3, top). In terms of
the total flux for Galaxy 1, the magnitude of the most so-
phisticated model is m = 14.18, compared to m = 14.32
for a model based on classical ellipsoids. Interestingly,
a single-component fit (not shown) to Galaxy 1 yields
a magnitude of m = 14.15. For Galaxy 2, we know
from the outset that classical ellipsoid models are en-
tirely inappropriate to use. Yet, despite every reason
to believe that the photometry would be inaccurate, we
find that the total flux of the traditional ellipsoid fit
is only 0.2 magnitude different from the most realis-
tic ring model. These two examples show once again
that a single-component Sérsic ellipsoid fit to compli-
cated galaxies can produce quite accurate measurement
of the total flux.

It is sometimes desirable to conduct bulge-to-disk
(B/D) decompositions, and Galaxy 1 is an ideal candi-
date to conduct a comparison. In the traditional ellipsoid
model (Table 3, bottom), the B/D ratio is 0.65. The
more sophisticated model (Table 3, top) requires sum-
ming the ring+tidal feature components to obtain the
disk component, which yields 14.65 mag, thus a B/D ra-
tio of 0.54. In this situation, most of the differences arise
from measuring the disk component, which differs by 0.2
mag, whereas the bulge component is quite robust, with
a difference of only 0.01 mag.

It is also of interest to understand how the structural
parameters are affected by different model choices, in
particular for the ring Galaxy 2. Whereas the effective
radius for the ring model is only 0.′′78, for the ellipsoid
model it is 8.′′28. This is understandable, bearing in mind
that the ring has a radius of nearly 8′′. To a classical
Sérsic profile, the galaxy appears to have a very flat (in
fact, a deficit) core, which leads to a low Sérsic index of
n = 0.12. As most of the flux is at 8′′, beyond which the
ring flux quickly fades, the ring radius is closely related
to the effective radius for a classical Sérsic model. For
the inner-truncated ring model (component 7), however,
the physical size of the ring is captured by the break ra-
dius rbreak parameter, whereas the re term no longer has
the classical meaning of the effective radius (i.e. half the
light is within re). Instead, re for component 7 is essen-
tially an exponentially declining scale length parameter,
given by Equation 33. As the flux dies away quickly be-
yond the peak, as shown in Figure 20i, the scale length
re for the ring model must therefore be quite small. The
differences in the re parameter between the traditional
model and the truncated model are therefore only due to
definitions, and not due to systematic or random mea-
surement uncertainties.

7.4. M51

The classical Whirlpool galaxy is a beautiful system
where a grand-design spiral, M51A, is interacting with
another spiral, M51B (Figure 21, Table 4). In addition
to there being obvious spiral structures for both galax-
ies, there are large tidal disturbances that emerge from
M51B, as seen in the SDSS r-band image provided by
D. Finkbeiner. Because they are closely overlapping, a
desirable goal is to deblend M51A and B, as well as to
model the spiral and tidal structures, simultaneously.

As with previous examples, we fit this galaxy using
both the most sophisticated analysis (Table 4, top) in
our toolbox, and comparing the results to the traditional

axisymmetric ellipsoids (Table 4, bottom) analysis. The
traditional analysis requires two components each, in or-
der to decompose a galaxy ostensibly into a bulge and a
disk. The reduction in χ2

ν between the two methods is
modest, because most of the residuals come from high-
frequency starforming regions that are not removed by
models which are fundamentally smooth, despite being
modified by radial Fourier modes and spiral rotations.

In the most detailed analysis of M51A, we use two spi-
ral arm components and two components for the bulge.
There is actually not a strong need to use two compo-
nents for the bulge except to better capture the detailed
profile shape, which has an inflection at r ≈ 0.′4, as seen
in Figure 21i. On the other hand, the use of two spi-
ral components is necessary because the spiral arm has
a “kink” in the rotation that cannot be created by us-
ing a single smooth rotation function. The spiral struc-
tures are modified by Fourier modes to create both a
slight lopsidedness and other subtle features. Because
there are more degrees of freedom in a two-arm spiral,
the higher order Fourier modes also can “see” detailed
structures, like the reverse flaring of the spiral structure
in Figure 21f.

For M51B, we employ three components in the fit, a
bulge (component 5 in Table 4, top), a tidal feature com-
ponent (component 6), and a spiral function (component
7), which model the three most visually striking compo-
nents. The tidal feature is mostly obtained by using the
second and third bending modes of Equation 27, as il-
lustrated in Figure 10. However, bending modes 2 and
3 are symmetric functions, so the high degree of asym-
metry comes about because of combined action with the
Fourier modes, which is shown to have a high amplitude
of 0.23 for the m = 1 mode, as well as moderate values
for other modes. Incidentally, despite the complexity of
the higher order structures, all the parameter values are
determined automatically by Galfit without the need
for an user to provide initial guesses (i.e. initially all 0
values) and without tweaking at any point in the analysis
(which is hardly feasible anyhow).

For even those who are experienced with detailed para-
metric fitting, one of the alarming facts about this anal-
ysis is that it employs 103 free parameters in the best-
fit model. So there are natural concerns about param-
eter degeneracies. However, as we have discussed in
Section 6.5, parameter degeneracies do not arise purely
based on the number of free parameters, but rather on
the types of parameters involved. The availability of
spatial information in 2-D provides one of the most im-
portant ways to break parameter degeneracies. We see
this explicitly in Figures 21e-h, where there is little evi-
dence that the subcomponents for M51A are strongly in-
fluenced by M51B, and vice versa. Furthermore, within
each galaxy, the subcomponents are so different in shape,
both qualitatively and quantitatively, that the amount of
crosstalk between them is also not significant. Therefore,
despite the extreme complexity of this system, and the
use of 103 free parameters, we find that degeneracies be-
tween the parameters are not an issue. Or, if they exist,
they do so at a low enough level that they do not sig-
nificantly affect the main parameters of interest, like the
luminosity of the subcomponents, or the profile shapes
and sizes.

There are, however, seemingly degenerate conditions
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Fig. 21.— Detailed analysis of M51. (a) Original data. (b) Best Sérsic profile fits of the M51A and B, all with Fourier modes,
corresponding to the parameters shown in Table 4. (c) Best-fit residuals. (d) The fit residuals using traditional, axisymmetric, ellipsoidal
model components. (e) The extended grand-design spiral component of M51A model in Panel (b). (f) The inner fine-structure spiral
component of the best-fit model. (g) The spiral component of M51B. (h) The extended tidal feature-like component of M51B, using
simultaneous bending and Fourier modes. A bulge component is present but not shown in the figures of M51A and B. i) 1-D surface
brightness profile of the two galaxies. The individual components are shown as dashed lines, and the solid line coursing through the data
is the sum of the different components. The lower panel shows the residuals of data − model.
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Table 4. M51 Fitting Results

# — sersic — ∆x [′] ∆y [′] mag re [′] n q θPA [deg] Comments
power — rin [′] rout [′] θrot [deg] α θincl [deg] θsky [deg]
fourier — mode: ampl. & phase [deg] mode: ampl. & phase [deg] mode: ampl. & phase [deg]

bending — mode: amplitude [′] mode: amplitude [′] mode: amplitude [′]

Best 1 — sersic — 0.00 0.00 13.09 0.04 1.18 0.91 −15.25 Compound
fit 0.00 0.00 0.04 0.00 0.04 0.01 4.74 bulge.

2 — sersic — {0.00} {0.00} 10.49 0.26 0.67 0.88 −65.31 Compound
M51A {0.00} {0.00} 0.00 0.00 0.01 0.00 0.66 bulge.

3 — sersic — {0.00} {0.00} 8.50 2.78 0.35 0.75 −87.22 Compound
{0.00} {0.00} 0.00 0.00 0.00 0.00 39.53 spiral.

power — −1.29 4.28 −718.11 0.29 40.42 −82.20
— 0.20 0.03 41.39 0.02 0.05 0.10

fourier — 1: −0.07 1: 109.10 3: 0.03 3: 4.07 4: 0.02 4: −36.57
— 1: 0.00 1: 0.44 3: 0.00 3: 0.43 4: 0.00 4: 0.35

fourier — 5: 0.02 5: 24.34 — — — —
— 5: 0.00 5: 0.32 — — — —

4 — sersic — {0.00} {0.00} 10.06 1.88 0.14 0.39 5.45 Compound
{0.00} {0.00} 0.00 0.00 0.00 0.00 4190.51 spiral.

power — 0.66 2.34 −172.67 −0.11 −0.01 15.58
— 0.02 0.01 3.51 0.01 1100.08 4190.50

fourier — 1: −0.15 1: 25.39 3: 0.02 3: −32.12 4: 0.15 4: 8.38
— 1: 0.00 1: 0.62 3: 0.00 3: 1.50 4: 0.00 4: 0.19

fourier — 5: 0.02 5: −4.02 — — — —
— 5: 0.00 5: 0.82 — — — —

M51B 5 — sersic — −0.19 4.44 12.06 0.05 0.89 0.62 −72.22 Compound
0.00 0.00 0.01 0.00 0.01 0.00 0.38 bulge.

6 — sersic — −0.16 4.43 11.93 0.18 1.06 0.81 −2.79 Compound
0.00 0.00 0.02 0.00 0.03 0.01 1.45 bulge.

7 — sersic — −0.45 5.19 9.93 2.51 [1.00] 0.62 −96.19 Tidal
0.01 0.01 0.00 0.01 — 0.00 0.36 structure.

bending — 2: 0.03 3: −0.15 — — — —
— 2: 0.02 3: 0.00 — — — —

fourier — 1: 0.34 1: 17.20 3: −0.25 3: 32.55 4: 0.14 4: −3.73
— 1: 0.00 1: 0.81 3: 0.00 3: 0.40 4: 0.00 4: 0.43

fourier — 5: 0.03 5: 7.32 — — — —
— 5: 0.00 5: 1.16 — — — —

8 — sersic — −0.10 4.52 10.20 0.90 0.72 0.58 −46.52 Bar and
0.00 0.00 0.00 0.00 0.00 0.00 0.56 spiral.

power — 0.88 1.08 46.34 1.60 42.29 52.50
— 0.00 0.00 0.66 0.01 0.16 0.25

fourier — 1: 0.07 1: 103.72 3: 0.05 3: 28.79 4: 0.01 4: −0.11
— 1: 0.00 1: 1.59 3: 0.00 3: 0.52 4: 0.00 4: 4.25

fourier — 5: 0.01 5: 23.12 — — — —
— 5: 0.00 5: 1.09 — — — —

merit χ2 = 34279512.00 Ndof = 632434 Nfree = 104 χ2
ν = 54.20

Trad. 1 — sersic — 0.00 0.00 10.05 0.33 1.75 0.85 −62.09
ellipsoid 0.00 0.00 0.00 0.00 0.01 0.00 0.55
model 2 — sersic — −0.06 −0.13 8.47 2.21 0.33 0.75 26.69
M51A 0.00 0.00 0.00 0.00 0.00 0.00 0.13
M51B 3 — sersic — −0.18 4.40 8.93 2.54 8.02 0.92 −44.73

0.00 0.00 0.03 0.11 0.09 0.00 1.24
4 — sersic — −0.04 4.90 10.66 1.45 1.66 0.57 71.33

0.00 0.00 0.02 0.02 0.02 0.00 0.42
merit χ2 = 42126720.00 Ndof = 632507 Nfree = 31 χ2

ν = 66.60

Note. — Best-fitting parameters for M51. See Table 3 for details. The “Best fit” parameters (top section) correspond to Panel (b) in Figure 21,
“Traditional ellipsoid model” parameters (bottom section) produce residuals shown in Panel (d), and the model is not shown. The free parameters
for the sky are not listed. The parameter in square brackets, [...], is held constant in the fit. The curly braces ({...}) around parameters indicate
that they are coupled relative to the first component.
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that have little to do with parameter coupling. Instead,
these are attributed to the fact that M51 has many of
non-smooth structural features, caused by dust lanes,
star-forming regions, tidal disturbances, and so forth.
Such spatially localized features, if strong enough, can
influence Galfit to “lock” on to them if the initial
conditions happened to be sufficiently close. The con-
sequences appear as degeneracies when, in fact, there
are many small local minima solutions. This graininess
in the χ2 terrain introduces slight perturbations to the
models, and may even cause fairly large shape differ-
ences in the final solutions. However, to a large extent,
it rarely affects the main parameters of interest, such
as the luminosity of a particular component or its size,
which are determined by much more global features than
the nuisances of local fluctuations to which higher order
parameters are more sensitive.

To gain some intuitive insight into the effects of com-
plex analysis, it is instructive to compare simple and
complex methods with regard to global and subcompo-
nent properties. In terms of the total luminosity, here we
find excellent agreement between sophisticated and tradi-
tional analysis, respectively, of mr = 8.24 vs. mr = 8.25
for M51A, and mr = 8.80 vs. mr = 8.73 for M51B. While
this level of agreement may at first seem surprising, it is
expected given the basic premise of least-squares mini-
mization. In fact, even a single-component fit to M51A
yields mr = 8.0, and for M51B mr = 9.0, which are
both quite close to the overall best-fit models, despite
the complications in the image. The main reason for
the discrepancy here is the uncertainty in the sky, due
to there being a large gradient. This fundamentally sets
the limit on the accuracy of the photometry to perhaps
no better than 0.1 to 0.2 magnitude, independent of the
analysis method.

The most sensitive benchmark for understanding dif-
ferences in the analysis is in detailed decompositions.
Here we compare the bulge-to-disk decomposition re-
sults. In the traditional ellipsoid analysis, we find a B/D
ratio of 0.23 for M51A and 4.9 for M51B. The large B/D
ratio for M51B is clearly unphysical, and is driven by
the large Sérsic index (n = 8.0) of the bulge component,
which is increased to accommodate the flux in the out-
skirts due to tidal features. In the most detailed analysis,
the B/D ratio for M51A is 0.16, whereas for M51B it is
merely 0.17. Examining the bulge of M51A more closely,
we find that the detailed analysis yields a total flux of
10.38 mag, whereas the traditional analysis extracts a
brighter bulge of 10.05 mag. The differences come from
the fact that the light of the inner spiral is in part driving
up the Sérsic index of the bulge when it is not properly
accounted. It is probably safe to conclude that a magni-
tude of 10.05 is a firm upper limit to the bulge luminosity.

Finally, it is worthwhile to compare how the disk pa-
rameters differ between the analyses to gain an under-
standing for how coordinate rotation affects the inter-
pretation of the parameters for the spiral models. From
Table 4, we find that the Sérsic index of the simple and
complex models are essentially identical for M51A, at
n ≈ 0.33. The interpretation for M51B is more compli-
cated, because the “disk” in an ellipsoidal model is not
qualitatively the same structure as the spiral analysis. In
fact, it is necessary to hold the Sérsic index of the tidal
component 6 fixed in the analysis. Nevertheless there are

clearly quantitative differences in that the simple anal-
ysis is larger by 55% in n. With regard to the effective
radius, the traditional analysis of M51A finds the disk
size to be about 2.′2, which compares favorably with the
spiral model size of 2.′8, or a 25% difference. Further-
more, the disk magnitudes for M51A differ only by 0.03
mag between simple and complex.

These comparisons therefore demonstrate that despite
the complex analysis being much more realistic looking,
fundamentally the meaning of the structural parameters
(size, luminosity, concentration index) are unchanged
from the original definition, even in the situation of spi-
ral components. This is an useful fact because our prior
intuitions, honed on fitting ellipsoidal models, continue
to be applicable. We note that the generally good agree-
ment between detailed and simplistic analysis witnessed
here and in previous examples is not entirely coinciden-
tal. It so happens because all shapes are fundamentally
perturbations of the best-fitting ellipsoidal model, even
if the result bears no resemblance to the original ellipse.

7.5. NGC 289

NGC 289 is an SAB(rs)bc galaxy, with a weak bar
and a complex inner spiral system (Figure 22, Table 5)
that resembles a ring. Upon closer examination, the ring
appearance comes about because there exists a bifurca-
tion in the spiral structure that connects up with the
opposing spiral arm. Furthermore, the bar is also multi-
component, with the inner component oriented at an an-
gle nearly 45◦ from the strong outer bar.

The best-fit analysis involves three spiral components,
an inner and an outer bar component, and a bulge (Ta-
ble 5, top). All except for the bulge component are modi-
fied by five Fourier modes, and are shown in Figures 22e-
h. The requirement of components 3 and 4 (Figures 22f
and g) is clear, because they are what form the most
striking and intricate patterns in the center, while the
requirement of component 5 (Figure 22h) is only evident
in the residuals, and makes up some of the diffuse light
within the inner 60′′ region. Although it does not seem
like an essential component, the inner bar structure (Fig-
ure 22e) qualitatively affects the detailed residual pattern
at the center, and is therefore included. When all the de-
tailed inner structures are properly accounted for, it is
straightforward to infer the bulge component, and assess
the uncertainties by varying different parameters of the
bulge. Doing so does not affect the inner fine-structures
because they are sharp and well localized.

Conducting the same decomposition using traditional
ellipsoid models (Table 5, bottom), we opted to fit three
components, ostensibly to model a bulge, disk, and a bar.
The result produces residuals seen in Figure 22d, reveal-
ing the intricate details of the inner spiral system. From
the fit, even though the disk and the bar component are
sensible, the bulge component is actually fitting a dif-
fuse disk component, which, in retrospect, is that shown
in Figure 22h. Because that inner spiral component is
quite luminous, and because there exists a bulge com-
ponent superposed on top of it, this quasi-bulge model
is almost 0.7 mag brighter than that inferred through
the detailed modeling above. Adding a fourth ellipsoid
model is not possible, because the central spiral residuals
are so great that they completely suppress the addition
of another component, causing the flux to go to zero.
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Fig. 22.— Detailed analysis of NGC 289 from CINGS. (a) Original data. (b) Best Sérsic profile fits with spiral rotation functions
and Fourier modes, corresponding to the parameters shown in Table 5. (c) Best-fit residuals. (d) The fit residuals using traditional,
axisymmetric, ellipsoidal model components. (e) The fine details of the inner bar structure of Panel (b). (f) Spiral component 1 of 3 of
the best-fit model. (g) The spiral component 2 of 3. (h) The spiral component 3 of 3. A bulge component is present but not shown in the
figures. (i) 1-D surface brightness profile of the galaxy. The individual components are shown as dashed lines, and the solid line coursing
through the data is the sum of the different components. The lower panel shows the residuals of data − model.
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Table 5. NGC 289 Fitting Results

# — sersic — ∆x [′′] ∆y [′′] mag re [′′] n q θPA [deg] Comments
power — rin [′′] rout [′′] θrot [deg] α θincl [deg] θsky [deg]
fourier — mode: ampl. & phase [deg] mode: ampl. & phase [deg] mode: ampl. & phase [deg]

Best 1 — sersic — 0.00 0.00 11.69 64.01 1.72 0.78 61.27 Bulge.
fit 0.09 0.10 0.01 0.75 0.03 0.00 0.43

2 — sersic — −2.63 −1.92 13.27 6.05 1.02 0.51 77.83 Inner
NGC 289 0.02 0.01 0.01 0.04 0.01 0.00 0.29 bar.

fourier — 1: 0.10 1: 63.87 3: −0.05 3: −4.23 4: −0.05 4: −20.77
— 1: 0.01 1: 4.87 3: 0.00 3: 0.92 4: 0.00 4: 0.95

fourier — 5: 0.03 5: 4.62 6: 0.06 6: −2.09 — —
— 5: 0.00 5: 1.32 6: 0.00 6: 0.61 — —

3 — sersic — −2.25 −2.77 12.30 32.86 0.54 0.32 −85.94 Spiral
0.02 0.02 0.01 0.15 0.00 0.00 0.53 comp. 1.

power — 19.23 34.40 85.51 1.48 52.11 136.18
— 0.14 0.14 0.94 0.02 0.08 0.10

fourier — 1: 0.14 1: −97.28 3: −0.05 3: −8.55 4: 0.02 4: 3.41
— 1: 0.00 1: 0.74 3: 0.00 3: 1.13 4: 0.00 4: 2.09

fourier — 5: 0.02 5: −3.77 6: 0.01 6: 10.09 — —
— 5: 0.00 5: 0.99 6: 0.00 6: 3.36 — —

4 — sersic — −4.54 −4.10 12.13 52.28 0.74 0.56 −32.85 Spiral
0.04 0.03 0.01 0.22 0.01 0.00 28.48 comp. 2.

power — −26.32 71.31 450.01 0.77 53.30 140.24
— 4.45 0.59 25.64 0.06 0.05 0.07

fourier — 1: −0.12 1: 84.16 3: 0.06 3: 32.07 4: −0.06 4: −30.37
— 1: 0.00 1: 0.64 3: 0.00 3: 0.45 4: 0.00 4: 0.38

fourier — 5: 0.04 5: −6.47 6: 0.02 6: −20.35 — —
— 5: 0.00 5: 0.32 6: 0.00 6: 0.81 — —

5 — sersic — −2.40 −1.90 11.82 50.67 0.46 0.68 −45.45 Spiral
0.04 0.04 0.00 0.30 0.00 0.00 35.81 comp. 3.

power — −9.09 75.87 411.91 −0.04 64.81 112.75
— 4.42 0.69 36.56 0.01 0.13 0.09

fourier — 1: −0.11 1: −33.85 3: 0.01 3: 1.93 4: −0.00 4: 9.85
— 1: 0.00 1: 1.08 3: 0.00 3: 3.10 4: 0.00 4: 6.71

fourier — 5: 0.00 5: −16.26 6: 0.02 6: −6.02 — —
— 5: 0.00 5: 10.08 6: 0.00 6: 0.58 — —

Neighbor 6 — sersic — 67.90 −181.06 14.69 20.03 1.93 0.72 −34.31
galaxy 0.04 0.05 0.01 0.34 0.03 0.01 0.99

merit χ2 = 158680.39 Ndof = 150419 Nfree = 103 χ2
ν = 1.05

Tradit. 1 — sersic — 0.00 0.00 11.03 41.90 1.62 0.74 54.96 “bulge”?
ellipsoid 0.04 0.03 0.01 0.33 0.01 0.00 0.21
model 2 — sersic — 2.01 −3.52 11.69 36.98 0.29 0.55 23.85 disk

0.04 0.05 0.01 0.06 0.00 0.00 0.12
3 — sersic — 0.02 −1.10 12.70 10.83 1.24 0.43 67.37 bar

0.02 0.01 0.03 0.08 0.01 0.00 0.19
Neighbor 4 — sersic — 70.60 −179.97 14.71 19.62 1.90 0.72 −34.01
galaxy 0.04 0.05 0.01 0.34 0.03 0.01 1.11

merit χ2 = 200361.19 Ndof = 150491 Nfree = 31 χ2
ν = 1.33

Note. — Best-fitting parameters for NGC 289. See Table 1 for details. The “Best fit” parameters (top section) correspond to Panel (b) in
Figure 22, “Traditional ellipsoid model” parameters (bottom section) produce residuals shown in Panel (d), and the model is not shown. The free
parameters for the sky are not listed.
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Once again, comparing the total luminosity between
the best-fit model with the ellipsoid fit, we find an ex-
cellent agreement of m = 10.37 mag vs. m = 10.42,
respectively. For a single-component ellipsoid fit, there
is also an excellent agreement of m = 10.46, despite the
main structural details not being unaccounted.

8. DISCUSSION AND CONCLUSIONS

This study is a proof of concept for how to conduct
more realistic image-fitting analysis using purely para-
metric functions, by breaking free from traditional as-
sumptions about axisymmetry. We introduced several
new ideas, including the use of Fourier and bending
modes, spiral rotation functions, and truncation func-
tions. These features can be used individually, or com-
bined in arbitrary ways. While these features are individ-
ually quite simplistic, used collectively they proliferate a
dizzying array of possibilities. Even so, the interpreta-
tion of each component remains intuitive, down to the
meaning of each fitting parameter. Indeed, the interpre-
tation of the traditional ellipsoidal profile parameters,
such as those for the Sérsic function, remains essentially
unchanged under modification. We then applied these
techniques to five case studies, illustrating that highly
complex and intricate structures can be modeled using
fully parametric techniques.

There are many practical applications for these tech-
niques. For instance, the Fourier modes are useful for
quantifying the average global symmetry of a galaxy,
and can easily be automated for galaxy surveys. It is
also possible to disentangle bright from faint asymme-
tries, and to conduct more robust bulge-to-disk decom-
positions in some galaxies. It would be useful to quantify
how much of the total flux is in a bulge versus the tidally
distorted component, which has implications for issues
such as late- vs. early-stage mergers, or major vs. minor
mergers.

More than just a presentation of new techniques, one of
the main purposes of this study is to highlight a method
to more realistically quantify measurement uncertainties
in high-S/N images. In galaxy fitting, the most desirable
goal will always be to obtain a fit with the lowest χ2, us-
ing the simplest model. In the past, this idea was closely
tied to the practice of using one- or two-component el-
lipsoid models, out of necessity. Simplicity is not nec-
essarily congruent with propriety or reality. This study
promotes the notion that simple models can be realistic.
It also opens up new possibilities for more detailed anal-
ysis depending on the image complexity. However, this
possibility is both a blessing and a curse. For, the fact
there is not one generic solution for any galaxy leads to
the following conundrum in image analysis, but one that
illustrates the merit of our approach:

“What model should one adopt, how much detail is
enough, and what about degeneracies?” We have
shown that detailed decomposition analysis can be arbi-
trarily sophisticated. It is for that same reason there is
often not a single, unique answer. However, the essential
fact, as seen through our examples and other detailed
analysis outside of this work, is that the marginal return
of adding complexity quickly diminishes. Therefore, the
above conundrum is in practice easy to address by con-
ducting analyses of varying sophistication without prej-
udice, then judging the outcome by taking a clear view

of what goal is to be achieved. If different solutions yield
the same result for a desired science goal (e.g., bulge
luminosity, bulge-to-disk ratio, average size, total lumi-
nosity, etc.), then it does not matter which model one
adopts. If they yield different outcomes, then the most
realistic analysis ought to be the more true. However, if
it is not possible to decide on the correct model, the dif-
ferent results by definition give an estimate of the model-
dependent measurement uncertainty. This last attribute,
rather than being a perceived weakness, is fundamentally
that which makes the analysis quantitatively rigorous.

Despite the flexibility allowed by the models, this pa-
per is merely an initial demonstration of concept and
leaves many issues unsolved. Currently, the formulation
of the spiral rotation function is fairly rigid, and can-
not produce arms that wind back onto itself (although
that can be approximated using the ring feature in Gal-
fit). The amount of curvature in the bending modes can
only fit arcs and not fuller semi-circles (which can partly
be modeled using a lopsided ring). There remains sub-
stantial room for future growth in profile types, shape
definitions, and toward spatial-spectral decompositions
for integral-field data.
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APPENDIX

A — HYPERBOLIC TANGENT ROTATION FUNCTION

The hyperbolic tangent (tanh(rin, rout, θincl, θ
sky
PA ; r)) portion of the α-tanh (Equation 28) and log-tanh (Equation 29)

rotation functions is given by Equation 5 below. The constant CDEF is defined such that at the mathematical “bar
radius” rin, the rotation angle θ reaches 20◦. This definition is entirely empirical. The above Figure shows a pure tanh
rotation function, where the rotation angle reaches a maximum θout near r = rout. Beyond rout, the rotation angle
levels off at θout. This function is multiplied with either a logarithmic or a power-law function to produce the desired
asymptotic rotation behavior seen in more realistic galaxies (see Section 4).

CDEF = 0.23 (constant for “bar” definition) (1)

A =
2 × CDEF

|θout| + CDEF
− 1.00001 (2)

B =
(

2 − tanh−1(A)
)

(

rout

rout − rin

)

(3)

r =
√

∆x2 + ∆y2 (circular − centric distance) (4)

tanh(rin, rout, θincl, θ
sky
PA ; r) ≡ 0.5 ×

(

tanh

[

B

(

r

rout
− 1

)

+ 2

]

+ 1

)

(5)
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B — HYPERBOLIC TANGENT TRUNCATION FUNCTION

The hyperbolic tangent truncation function (tanh(x0, y0; rbreak, rsoft, q, θPA)) (see Section 5) is very similar to the
coordinate rotation formulation in Appendix A, except for different constants that define the flux ratio at the truncation
radii: at r = rbreak the flux is 99% of the untruncated model profile, whereas at r = rsoft the flux is 1%. With this
definition, Equation 7 is the truncation function:

B = 2.65 − 4.98

(

rbreak

rbreak − rsoft

)

(6)

tanh(x0, y0; rbreak, rsoft, q, θPA) ≡ 0.5 ×
(

tanh

[

(2 − B)
r

rbreak
+ B

]

+ 1

)

(7)

Note that the radius r is a generalized radius (as opposed to a circular-centric distance), i.e. one that is perturbed by
C0, bending modes, or Fourier modes, of the truncation function. When the softening length (∆rsoft) is used as a free
parameter, it is defined as ∆rsoft = rbreak − rsoft.
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