
For Galfit 3.0.4 and more recent versions

Preprint typeset using LATEX style emulateapj v. 7/8/03

GALFIT USER’S MANUAL

Chien Y. Peng
1

For Galfit 3.0.4 and more recent versions

ABSTRACT

Galfit is a tool for extracting information about galaxies, stars, globular cluster, stellar disks, etc., by using parametric
functions to model objects as they appear in two-dimensional digital images. In simplest use, Galfit allows one to fit
an ellipsoid model to light profiles in an image. For more complicated situations, it can model highly detailed shapes
that are curved, irregular, lopsided, ringed, truncated, or have spiral arms. One can mix and match these features
within a single component model, or can add them to other components to create complex shapes. This document
describes how to run Galfit and explains its features, but it is not complete without two companion papers (Peng,
Ho, Impey, & Rix 2010, AJ, 139, 2097; and Peng, Ho, Impey, & Rix 2002, AJ, 124, 266) which illustrate how the
features can be used on real galaxies. There have been a number of upgrades since the original 2002 publication because
Galfit continues to evolve. Thus this document supersedes both of the articles whenever there are differences.

Subject headings:

1. INTRODUCTION

A way to characterize the structure of objects in an
image is to model their light distribution using analytic
functions. For the functions to be useful, they gener-
ally have to have free parameters (e.g. size, luminosity)
which one can adjust to model a wide variety of differ-
ent shapes. Galfit2 is an image analysis algorithm that
can model profiles of galaxies, stars, and other astronom-
ical objects in digital images. If successful, the features
of interest are summarized into a small set of numbers,
such as size, luminosity, and profile central concentration,
which one can compare against other objects for doing
science. One common application of this technique is
to measure global morphology by using a single compo-
nent, ellipsoidal model. Another use is to “take apart” a
galaxy into different constituents like bulge, disk, bar, or
to separate overlapping galaxies, by using two or more
component models. This document details the features
available for use in Galfit and how to use them.

Design Considerations Fitting functions to an image
and interpreting what the results mean can be challeng-
ing even to skilled analysts because astronomical objects
come in many sizes, shapes, and degrees of complexity.
In addition, what one wishes to get out of the data de-
pends on the science goal. Therefore there is often not
one universal way to do an analysis that will satisfy ev-
eryone’s needs. Deciding what to do and interpreting
what the results mean require one to draw on scientific,
technical, and often, artistic, skills and intuition.
The analysis being potentially complex, the design

premise of Galfit tries to avoid adding another layer of
complexity in its use. If the analysis is to be complex, it
ought to be because an object is physically complicated,
not because the code is complicated to use. Moreover,
the ability to do complicated analysis should not make it
burdensome for fitting a single component. These crite-
ria mean that Galfit does only one thing, which is to fit
functions. It does not help users do a lot of other things

1 NRC Herzberg Institute of Astrophysics, 5071 West
Saanich Road, Victoria, British Columbia, Canada V9E 2E7;
Chien.Y.Peng@gmail.com

2 http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html

that are useful for analyzing large surveys, like helping
users extract a point spread function, determining the
initial parameters of the fit, figuring out the image size to
fit, locating galaxies in an image, masking out neighbor-
ing objects, determining the sky pedestal level a priori,
etc. — even though all these things are crucial for doing
a correct analysis. Instead, the user must take care of
all those pre- and post-processing (parameter value con-
version, “book-keeping”) outside of Galfit. Doing so
greatly simplifies the use of Galfit. It gives users more
control over the analysis. Because each of the aforemen-
tioned steps requires some degree of mastery, by not try-
ing to do everything for users allows Galfit to be less a
“black box” than it might seem otherwise. Even though
Galfit does not perform critical pre-analysis for peo-
ple, the project website does provide all the information
necessary for users to learn the background necessary to
perform proper analysis.
The above considerations mean the Galfit interface

has the smallest essential set of controlling parameters
needed to perform reliable photometry, located in a con-
cise menu text file. There are no other hidden program
knobs to fine-tune behavior. The only things which are
not immediately visible to users are fundamental data
that ought to be present in FITS image headers: expo-
sure time, instrumental gain, readnoise, and number of
images combined to produce the data. They are essen-
tial for doing quantitative science, therefore one should
reasonably expect or provide them in all FITS images —
just as importantly, that they correspond correctly 3 to
the data units. To provide additional controls, an user
may define a constraint file. The bare essential inter-
face allows users to focus attention on the analysis itself,
rather than on tweaking the program “knobs,” in order
to produce a reliable outcome.
To emphasize the above philosophy, this manual starts

by getting new users quickly going on running Galfit

by the next page. A new user should then immediately

3 “correspond correctly” means that the exposure time must
correspond to the image data units (e.g. an image in flux units
has an exposure time of 1-second, not total exposure time). The
gain factor directly converts the pixel values into electrons, and the
readnoise is in units of electrons. See Section 3.

2

be able to try out complex applications, to hone intuition
without being mired in trying to figure out what different
program options do.
With the basic hand-shakes out of the way, the quickest

way to learn aboutGalfit is to read up to Section 2, run
the first example provided in the galfit/EXAMPLE direc-
tory, and experiment with it. The remaining document
will then explain how Galfit determines the goodness
of fit (§ 3), what functions are available to fit in Galfit

(§ 4, 5, 6), how one can run Galfit using an interactive
menu (§ 7, which one actually never needs to do), items
in the Galfit menu (§ 8, which is the most important
section). Section 9 will explain how one can interact with
Galfit through a green window once it gets going (use-
ful but not crucial). This will give the user some control
over when to quit, which is sometimes nice. Once the fit
is done, the algorithm will produce several output files
(§ 10). Then, Section 11 tries to offer some hints on how
to deal with difficult situations.
Lastly, for frequently-asked questions that are not an-

swered by this document, please visit the Galfit web-
site, which is permanently maintained at (there is no
space in the address):

http://users.obs.carnegiescience.edu/peng/
work/galfit/galfit.html

2. QUICK START: RUNNING Galfit FOR THE VERY
FIRST TIME ON THE EXAMPLE

The quickest and easiest way to run Galfit is to
have a pre-formatted template file like the one shown
in Figure 17 (also look for the EXAMPLE.INPUT file in
the Galfit source directory). Skip to § 8 to see what
the menu parameters mean. In the galfit/EXAMPLE
directory there is a simple example that one can try
out immediately. After Galfit has been compiled and
aliased/linked, to run the example, go into that directory
and simply type:

galfit galfit.feedme

In fact, please do so now before reading any further. If
there is a problem at this stage, now is the time to re-
quest assistance. If the example runs properly, the resid-
ual image imgblock.fits[3] should look flat at the center,
where there used to be a galaxy. One should display
imgblock.fits[1], imgblock.fits[2], and imgblock.fits[3] and
examine their image headers to understand what infor-
mation is produced. Note that imgblock.fits[0] is blank.
The example only fits one Sérsic model to a real galaxy.

It is simple enough that just one will remove all signifi-
cant residuals down to the noise level. In general, if the
galaxy is more complex one can add more components
to reduce the residuals. There is no limit as to the num-
ber of components or the mix of functional types one can
use in a fit. For this particular example, however, adding
more components is not useful because a single Sérsic al-
ready removes all the galaxy light: adding another model
will cause one of the components to be highly suppressed,
or be shifted out of the image completely. Either one of
these things happening will then make Galfit crash.
Even though this is not a graceful way to exit, the op-
erating philosophy is to provide no solution over a false
solution when the problem is not well posed numerically.

After Galfit finishes running it will produce three
output files called “galfit.01”, “fit.log”, and “img-
block.fits”. To understand these files, please see Sec-
tion 10.
You now know how to run Galfit. The rest of the

document will explain the parameters in the input and
output files. Please take a look at EXAMPLE.INPUT
which contains examples of things that can be done in
Galfit, and visit the Galfit website for answers to
questions that may already have come up by now.

3. LEAST-SQUARES MINIMIZATION AND STATISTICS

Least-Squares Minimization. Galfit is a least-
squares fitting algorithm of the “non-linear” type, and
uses a Levenberg-Marquardt algorithm to find the opti-
mum solution to a fit. “Non-linear” simply means that
the parameters being fitted are not only coefficients (am-
plitude) to functions, but can be involved in exponents
of powerlaws, in fractions, etc.. Non-linear analysis re-
quires iterating to find the best solution, whereas linear
minimization involves a matrix inversion.
As with all least-squares algorithms, Galfit deter-

mines the goodness of fit by calculating χ2 and comput-
ing how to adjust the parameters for the next step. If the
χ2 decreases significantly, Galfit will keep going. When
the solution no longer improves by some criterion, it will
stop on its own. In Galfit the indicator of goodness of
fit is the normalized or reduced χ2, i.e. χ2

ν :

χ2
ν =

1

NDOF

nx
∑

x=1

ny
∑

y=1

(fdata(x, y)− fmodel(x, y))
2

σ(x, y)
2 , (1)

summed over all nx and ny pixels, where NDOF is the
degree of freedom (number of pixels - number of free
parameters).
As shown in Equation 1, χ2 minimization requires

there to be two input images: the input data, fdata(x, y),
and the σ image, σ(x, y). The model image, fmodel(x, y),
is generated by Galfit internally on the fly as it tries to
find the best match to the data; the user specifies what
models are to be used in the fit. σ(x, y) is often called
either as the “sigma” image or the weight image, i.e. one
standard deviation of counts at each pixel (which is re-
lated to the Poisson “noise”). In times when the σ(x, y)
image is not available to the user, Galfit has a way to
automatically generate one internally based on Poisson
statistics of the data. This is the only time when the im-
age header information is used. For Galfit to compute
a sigma image reliably, the input data image has to be
in the following specific form and there need to be some
information in the image header:

What Header Keywords Galfit Wants and Why.
There are only 4 standard header keywords that Gal-

fit normally scans for in a FITS image without prompt-
ing: EXPTIME, GAIN (or ATODGAIN), RDNOISE,
and NCOMBINE. If these keywords are not found for
some reason, Galfit assumes the default values of 1, 7,
and 5.2, 1, respectively which, for historical reasons only,
correspond to values for the WFPC2 camera on HST. As
of Version 3.0.1 the RDNOISE parameter is not used.
Together with the photometric zeropoint in the input

menu file given by the user, EXPTIME is used to cal-
culate the magnitude or surface brightness of a model.

3

If, for some reason, an image has units of flux (counts
sec−1), the EXPTIME parameter value should be 1 sec-
ond, rather than the total or average exposure time. Side
note: it should be noted that it is highly inadvisable to
analyze images where the ADUs are in flux units rather
than count units because the sky in flux units virtually
always appears deceptively small and insignificant.
The GAIN and NCOMBINE parameters are only used

by Galfit to calculate the σ-image (the σ(x, y) in Eq.
1) for pixel weighting if the user does not provide one.
In the example you ran above, Galfit generated a σ
image internally. Further details will be discussed in
Section 8.1 regarding σ images. However, here is the
basic idea: Galfit converts the image ADUs into elec-
trons using the GAIN parameter such that, at each pixel:
ADU×GAIN = electrons per pixel. Therefore, if the
ADU has units of [counts], then the GAIN has to have
a unit of [e−ADU−1]. This signal term (i.e. with back-
ground removed) is then added in quadrature with the
background RMS to determine the Poisson noise at each
pixel. Finally, this image with units of [electrons] is con-
verted back into the same units as the data image, i.e.
in [ADU].
There is one subtlety in this process related to the num-

ber of images used to create the data image, because
the data image might have been created by averaging
or summing several subexposures. If the subexposures
were averaged into a final image, NCOMBINE equals the
number of images used in the average, and the GAIN and
RDNOISE need to be that for a single readout (GAIN0,
RDNOISE0). The RDNOISE parameter should have a
unit of [electrons]. On the other hand, if the subex-
posures were summed, then NCOMBINE should be set
to 1, the GAIN value should be that for a single image
(GAIN0), and the RDNOISE should be an effective read
noise (often

√

Nimages× RDNOISE0).
When creating a σ-image, the sigma at each pixel

comes from both the source and from a uniform sky back-
ground, summed in quadruture. The sigma of the back-
ground is estimated directly from the RMS fluctuation
in regions where there are no objects. Sky estimation is
automatic and, though rather crude, is nevertheless of-
ten sufficient. The user can turn off sky estimation by
telling Galfit:

galfit -noskyest <filename>

When this happens the σ-image is obtained by scaling
the image pixels, as is, directly into electrons based on
Poisson statistics without adding a sky RMS term. This
is a useful way to see how sensitive the results are due
to the accuracy of the σ-image as well as the crude sky
determination. The user can also tell Galfit what sky
and RMS to use by specifying:

galfit -skyped {value} -skyrms {value} <filename>

If the user wants to supply a sigma image, the user
may override Galfit (see § 8.1). Galfit will then ig-
nore the RDNOISE, GAIN, and NCOMBINE informa-
tion. But, it is worth emphasizing that doing so is

advisable only for users who are clear about the
notion of a sigma image. Indeed, one of the “prob-
lems” most commonly reported could be avoided if users
simply allowed Galfit to create an internal sigma im-
age instead of providing one without making sure it is
appropriate (as explicitly defined by Equation 1). Gal-

fit is not very sensitive to the correctness of a sigma
image, as long as it obeys the Poisson statistics, even
roughly. Even if the normalization of the sigma image is
off greatly, only the χ2

ν calculation is affected but not the
convergence on a solution. Most mistakes in the sigma
image are pretty glaring: the sigma images have zero or
negative values, have the wrong pedestal level, are not
Poisson in scaling, or do not look anything like the data.
If you feel you ought to provide a σ-image, please first

read Section 8.1 and refer to theGalfit website on “Fre-
quently Asked Questions and Advisory.” Otherwise, it
generally would not hurt to let Galfit do so, unless the
data ADUs have mysterious units that are not easily con-
verted into electrons through the GAIN parameter. So
please make sure that the image header units are
such that ADU×GAIN = electrons, and that the ob-
ject does not dominate the field of view. Please see
Section 8.1 for a more detailed discussion on the σ-image.

The next three sections describe the analytic functions
available in Galfit for fitting light profiles. The func-
tions are divided into three categories: the regular radial
profile (§ 4), the azimuthal shape (§ 5), and the trunca-
tion function (§ 6).

4. THE RADIAL PROFILE FUNCTIONS

The radial profile functions control the radial fall-off in
flux, e.g. the Sérsic, Nuker, exponential models, among
others. Galfit allows for some of the most frequently
used functions in literature, and more will likely be added
in the future.
The normalization parameter for the radial profiles can

be specified by the user, by adding an integer to the end
of the name of the functional name, e.g. sersic2, gaus-
sian1, etc.. The default normalization, which is not in-
dicated using a number, depends on the functional form
and is discussed in the individual sections below. For
instance, the default normalization for a Sérsic profile is
total luminosity, whereas for a Ferrer’s profile, it is cen-
tral surface brightness. Aside from the default option,
the numerical suffix has the following meaning for the
normalization:

• function – default (see documentation below)

• function1 – central surface brightness

• function2 – surface brightness at radius parame-
ter 4 (e.g. effective radius for Sérsic, FWHM for
Gaussian, rs for exponential, etc.).

• function3 – for truncation only: surface brightness
at the break radius, i.e. 99% flux radius.

The Sérsic Profile The Sérsic powerlaw is one of
the most frequently used to study galaxy morphology,
and has the following functional form:

4

Fig. 1.— The Sérsic profile. Notice that the larger the Sérsic
index value n, the steeper the central core, and more extended the
outer wing. A low n has a flatter core and more sharply truncated
wing. Large Sérsic index components are very sensitive to uncer-
tainties in the sky background level determination because of the
extended wings.

Σ(r) = Σe exp

[

−κ

(

(

r

re

)1/n

− 1

)]

. (2)

Σe is the pixel surface brightness at the effective radius
re. The parameter n is often referred to as the concentra-
tion parameter. When n is large, it has a steep inner pro-
file, and a highly extended outer wing. Inversely, when n
is small, it has a shallow inner profile and a steep trun-
cation at large radius. The parameter re is known as the
effective radius such that half of the total flux is within
re. To make this definition true, the dependent-variable
κ, is coupled to n, thus it is not a free parameter. The
classic de Vaucouleurs profile that describes a number of
galaxy bulges is a special case of the Sérsic profile when
n = 4 (thus κ = 7.67). As explained below, both the ex-
ponential and Gaussian functions are also special cases
of the Sérsic function when n = 1 and n = 0.5, respec-
tively. As such the Sérsic profile is a common favorite
when fitting a single component.
The flux integrated out to r = ∞ for a Sérsic profile

is:

Ftot = 2πr2eΣee
κnκ−2nΓ(2n)q/R(C0;m), (3)

The term R(C0;mi) is a geometric correction factor when
the azimuthal shape deviates from a perfect ellipse. As
the concept of azimuthal shapes will be discussed in Sec-
tion 5, we will only comment here that R(C0;mi) is sim-
ply the ratio of the area between a perfect ellipse with the
area of the more general shape, having the same axis ra-
tio q and unit radius. The shape can be modified by
Fourier modes (m being the mode number) or disky-
ness/boxyness. For instance, when the shape is modified

by diskyness/boxyness, R(C0) has an analytic solution
given by:

R(C0) =
π(C0 + 2)

4β(1/(C0 + 2), 1 + 1/(C0 + 2))
, (4)

where β is the Beta function. In general, when the
Fourier modes are used to modify an ellipsoid shape,
there is no analytic solution for R(mi), and so the area
ratio must be integrated numerically.
In Galfit, the flux parameter that one can use for

the Sérsic function is either the integrated magnitude
mtot (use “sersic” function), or the surface brightness
magnitude µe (use “sersic2” function) at the effective
radius, corresponding to Σe. The integrated magnitude
is the standard definition:

mtot = −2.5log10

(

Ftot

texp

)

+mag zpt, (5)

where texp is EXPTIME from the image header. Each
Sérsic function can thus potentially have 7 classical free
parameters in the fit: xc, yc, mtot, re, n, q, PA. The non-
classical parameters, C0, Fourier modes, bending modes,
and coordinate rotation may be added as needed. There
is no restriction on the number of Fourier modes, and
bending modes, but each Sérsic component can only have
a single set of C0 and coordinate rotation parameters.

The Exponential Disk Profile The exponential
profile has some historical significance, so Galfit is ex-
plicit about calling this profile an exponential disk, even
though an object which has an exponential profile need
not be a classical disk. Historically, an exponential disk
has a scale length rs, which is not to be confused with
the effective radius re used in the Sérsic profile. For
situations where one is not trying to fit a classical disk
it would be less confusing nomenclature-wise to use the
Sérsic function for n = 1, and quote the effective radius
re. But because the exponential disk profile is a special
case of the Sérsic function for when n = 1 (see Figure 1),
there is a relationship between re and rs, given by:

re = 1.678rs (For n = 1 only). (6)

The functional form of the exponential profile is:

Σ(r) = Σ0 exp

(

− r

rs

)

(7)

Ftot = 2πr2sΣ0q/R(C0,m), (8)

The 6 free parameters of the profile are: x, y, total mag-
nitude, rs, θPA and q.

The Gaussian Profile The Gaussian profile is an-
other special case of the Sérsic function for when n = 0.5
(see Figure 1), but here the size parameter is the FWHM
instead of re. The functional form is:

Σ(r) = Σ0 exp

(−r2

2σ2

)

(9)

Ftot = 2πσ2Σ0q/R(C0,m), (10)

5

Fig. 2.— The modified Ferrer profile. The black, reference,
curve has parameters rout = 100, α = 0.5, β = 2, and Σ0 = 1000.
The red curves differ from the reference only in the α parameter
as indicated by the red numbers. Likewise, the green curves differ
from the reference only in the β parameter as indicated by the
green numbers.

Fig. 3.— The empirical King profile. The black, reference, curve
has parameters rc = 50, rt = 100, α = 2, Σ0 = 1000. The red
curves differ from the reference curve only in the α parameter as
indicated by the red numbers. Likewise, the green curves differ
from the reference only in the rc parameter as indicated by the
green numbers.

Fig. 4.— The Moffat profile. The black, reference, curve has
parameters n = 2, FWHM = 20, and Σ0 = 1000. The other
colored lines differ only in the concentration index n as shown by
the numbers. The dashed line shows a Gaussian profile of the same
FWHM.

where FWHM = 2.354σ. The 6 free parameters of the
profile are: x, y, the total magnitude, FWHM, q, and
θPA.

The Modified Ferrer Profile The Ferrer profile
(Figure 2) has a nearly flat core and an outer trunca-
tion. The sharpness of the truncation is governed by the
parameter α, whereas the central slope is governed by
parameter β. Because of the flat core and sharp trun-
cation behavior, it is often used to fit galaxy bars and
“lenses.”

Σ(r) = Σ0

(

1− (r/rout)
2−β
)α

(11)

The profile is only defined within r ≤ rout, beyond which
the function has a value of 0. The 8 free parameters
of the Ferrer profile are: x, y, central surface brightness,
rout, α, β, q, and θPA.

The Empirical (Modified) King Profile The em-
pirical king profile (Figure 3) is often used to fit the light
profile of globular clusters. It has the following form (El-
son 1999):

Σ(r)=Σ0

[

1− 1

(1 + (rt/rc)2)1/α

]

−α

×
[

1

(1 + (r/rc)2)1/α
− 1

(1 + (rt/rc)2)1/α

]α

.(12)

The standard empirical King profile has a powerlaw
α = 2. In Galfit, α can be a free parameter. In this
model, the flux parameter to fit is the central surface
brightness, expressed in mag/arcsec2 form, i.e. µ0 (see

6

Fig. 5.— The Nuker profile. The black, reference, curve has parameters rb = 10, α = 2, β = 2, γ = 0, and Ib = 100. For the other
colored lines, only one value differs from the reference, as shown in the legend.

Eq.19). The other free parameters are the core radius
(rc) and the truncation radius (rt), in addition to the ge-
ometrical parameters. Outside the truncation radius, the
function is set to 0. Thus the total number of classical
free parameters is 8: x, y, Σ0, rc, rt, α, q, θPA.

The Moffat Profile The profile of the HST WFPC2
PSF is well described by the Moffat function. Other than
that, the Moffat function is less frequently used than the
above functions for galaxy fitting. The functional profile
and the total flux equations are, respectively:

Σ(r) =
Σ0

[1 + (r/rd)2]
n , (13)

Ftot =
Σ0πr

2
dq

(n− 1)R(C0,m)
, (14)

In Galfit the size parameter to fit is the FWHM, where
the relation between rd and FWHM is:

rd =
FWHM

2
√
21/n − 1

(15)

The 7 free parameters are: x, y, mtot (i.e. total magni-
tude, instead of µ0) FWHM (instead of rd), the concen-
tration index n, q, and θPA.

The Nuker Profile The Nuker profile (Figure 5)
was introduced by Lauer et al. (1995) to fit the nuclear
profile of nearby galaxies, and it has the following form:

I(r) = Ib 2
β−γ
α

(

r

rb

)

−γ [

1 +

(

r

rb

)α]
γ−β
α

(16)

The flux parameter to fit is µb, the surface brightness of
the profile at rb, which is defined as:

µb = −2.5 log10

(

Ib
texp∆x∆y

)

+mag zpt (17)

The Nuker profile is a double powerlaw, where (in Eq. 16)
β is the outer power law slope, γ is the inner slope, and α
controls the sharpness of the transition. The motivation
for using this profile is that the nuclei of many galaxies
appear to be fit well in 1-D (see Lauer et al. 1995) by a
double powerlaw. However, use caution when interpret-
ing this function, because, for example, a low α value
(α . 2) can be reproduced by simultaneously a high γ
and a low β, (compare Figure 5c with the other two pan-
els), which is a serious potential for degeneracy. In all
there are a total of 9 free parameters: x, y, µb, rb, α, β,
γ, q, θPA.

The Edge-On Disk Profile If a flattened disk galaxy
is viewed edge on, the projected surface brightness dis-
tribution takes on the following form:

Σ(r, h) = Σ0

(

r

rs

)

K1

(

r

rs

)

sech2
(

h

hs

)

, (18)

where Σ0 is the surface brightness profile, rs is the major-
axis disk scale-length, and hs is the perpendicular disk
scale-height, and K1 is a Bessel function. The flux pa-
rameter being fitted in Galfit is the central surface
brightness:

µ0 = −2.5 log10

(

Σ0

texp∆x∆y

)

+mag zpt, (19)

where texp is the exposure time from the image header,
and ∆x and ∆y are the platescale in arcsec, which the
user supplies (Item K in the Galfit input file).
Note that if the disk is oriented horizontally the coor-

dinate r is the x-distance (as opposed to the radius) of a

7

Fig. 6.— Generalized ellipses with a) axis ratio q = 1 and b) axis ratio q = 0.5.

pixel from the origin. There are 6 free parameters in the
profile model: x0, y0, Σ0, rs, hs, and θPA.

The PSF Profile For unresolved sources, one can
fit pure stellar PSFs to an image (as opposed to narrow
functions convolved with the PSF). The PSF function is
simply the convolution PSF image that the user provides
(in Item D of the Galfit menu), hence there is no pre-
scribed analytical functional form. As the point spread
function, this is the only profile that is not convolved.
The PSF has only 3 free parameters: xc, yc and total
magnitude. Because there is no analytical form, the to-
tal magnitude is determined by integrating over the PSF
image and assuming that it contains 100% of the light.
If the PSF wing is vignetted, there will be a systematic
offset between the flux Galfit reports and the actual
value.
If one wants to fit this “function”, make sure the in-

put PSF is close to, or super-, Nyquist sampled. The
PSF shifting is done by a Sinc+Kaiser interpolation ker-
nel, which can preserve the widths of the PSF even un-
der sub-pixel shifting. This is in principle much bet-
ter then Spline interpolation or other high order inter-
polants. However, if the PSF is under-sampled, aliasing
will occur, and the PSF interpolation will be poor. If the
PSF is undersampled, it is better to provide an oversam-
pled PSF if possible, even if the data is undersampled.
With HST data this can be done using TinyTim (Krist
& Hook 1997) or by combining stars. Galfit will take
care of rebinning during the fitting.
Note that the alternative to fitting a PSF is to fit a

Gaussian with a small width, i.e. 0.4-0.5 pixels, which
Galfit will convolve with the PSF. This is generally
not advisable if a source is a pure point source because
convolving a narrow function with the PSF will broaden
out the overall profile, even if slight. The convergence can
also be poor if the FWHM parameter starts becoming
smaller than 0.5 pixel. However, this technique can still
be useful to see if a source is truly resolved.

The Background Sky. The background sky is a flat
plane that can tilt in x and y. Thus it has a total of 3
free parameters. The pivot point for the sky is fixed to
the geometric center (x0, y0) of the image, calculated by
(npix + 1)/2, where npix is the number of pixels along
one dimension. The tip and tilt are calculated relative
to that center. Because the galaxy centroid located at
(x, y) is in general not at the geometric center (x0, y0)
of the image, the sky value directly beneath the galaxy
centroid is calculated by:

sky(x, y) = sky(x0, y0) + (x− x0)
dsky

dx
+ (y − y0)

dsky

dy
(20)

5. THE AZIMUTHAL PROFILE FUNCTIONS

The previous section illustrates the kind of radial pro-
files that are available to fit galaxies. However, to gener-
ate the shapes of a galaxy requires the use of azimuthal
functions, which control what a model component looks
like in the sky projection, e.g. elliptical, disky/boxy, ir-
regular, curvy, or spiral. Each profile component can
be modified by any one or all of the following azimuthal
functions. For example, an ellipse can be modified by
bending modes, Fourier modes, diskyness/boxyness, and
a spiral rotation function – the combination of which
would result in a rather odd looking spiral structure.

Generalized Ellipses The simplest azimuthal shape
in Galfit is the traditional generalized ellipse. This is
the starting point for allGalfit analysis: no matter how
complex the final outcome is, one should always begin
by fitting an ellipsoid, on top of which complications are
introduced.
The radial coordinate of the generalized ellipse is de-

fined by:

8

r(x, y) =

(

|x− xc|C0+2
+

∣

∣

∣

∣

y − yc
q

∣

∣

∣

∣

C0+2
)

1
C0+2

. (21)

Here, the ellipse axes are aligned with the coordinate
axes, and (xc, yc) is the centroid of the ellipse. The el-
lipse is called “general” in the sense that C0 is a free
parameter, which controls the diskyness/boxyness of the
isophote. When C0 = 0 the isophotes are pure ellipses.
With decreasing C0 (C0 < 0), the shape becomes more
disky (diamond-like), and conversely, more boxy (rectan-
gular) as C0 increases (C0 > 0) (see Figure 6). Note that
C0 will not appear in the menu unless the user explicitly
asks for it (see EXAMPLE.INPUT). The major axis of
the ellipse can also be oriented to a position angle (PA –
not shown). Thus, there are a total of 4 free parameters
(x0, y0, q, θPA) in the standard ellipse, and one: C0, for
diskyness/boxyness parameter. C0 should not be used
until a best fitting ellipsoid model has been found.

Fourier Modes Few galaxies look like perfect el-
lipsoids, and one can better refine the azimuthal shape
by adding perturbations in the form of Fourier modes.
The Fourier perturbation on a perfect ellipsoid shape is
defined in the following way:

r(x, y) = r0(x, y)

(

1 +

N
∑

m=1

am cos (m(θ + φm))

)

.

(22)
In the absence of Fourier modes in the parenthesis, the
r0(x, y) term is the radial coordinate for a traditional
ellipse, and θ = arctan ((y − yc)/((x − xc)q)) defined in
Equation 21. am is the Fourier amplitude for the mode
m. Defined as such, am is the fractional deviation in
radius from a generalized ellipse of Eq. 21. The number
of modes N is up to the user to decide, and the user may
also choose to skip certain modes. See Figure 7 for some
examples of how Fourier modes modify a circle and an
ellipse into other shapes.
The “phase angle”, φm, is the angle of a mode m, rel-

ative to the PA of the generalized ellipse. That is to
say, the phase angle is 0 degrees in the direction of the
semi-major axis of the generalized ellipse (rather than
up), increasing counter-clockwise. Notice that the phase
angle is complete within a range of: −180o/m < φm ≤
180o/m, which is referred to as the cardinal angle. The
phase angle in Galfit is always reported to users in the
cardinal range.
Unlike the classical shape parameters q and PA, the

Fourier modes will only appear in the menu when the
user wants to fit them (see EXAMPLE.INPUT for how
to do so). Otherwise they will remain out of view to
avoid clutter. Each mode has 2 free parameters, am and
φm, and the number of modes the user can add is unre-
stricted. However, the most useful modes are low order
ones (m = 1, 3...6). Also, m = 2 should rarely be used
if one is already fitting the traditional axis ratio q for an
ellipse, since q and m = 2 are fairly degenerate with each
other. Initially, the parameters of the Fourier modes can
be all set to 0 even if the final values greatly deviate from
0.

Properly Interpreting Fourier Mode Parameters A
common (but incorrect) first impression is to regard the
Fourier modes as a “shapelet decomposition” technique.
In shapelet decomposition of an image, an object is bro-
ken down into some number of basis functions, i.e. fixed
2-D geometric patterns that are mathematically orthogo-
nal functions. The amplitude of a shapelet basis function
is the flux of that component. By combining the right
shape and number of basis functions, anything in the
image can be modeled. However, Galfit does not do
shapelet decomposition. In Galfit, the Fourier modes
modify the coordinate system from a rectilinear grid into
something more exotic. By stretching/shrinking it in the
radial direction, by an amount that depends on the az-
imuthal angle, the result is that the azimuthal shape of
a component is modified, but the radial profile is not.
Another way to think about it is that, in Galfit, the
concept of using Fourier modes to modify an ellipse is
fundamentally the same as using the axis ratio param-
eter (q) to modify a circle into an ellipse – the latter is
what all 2-D image fitting algorithms do. Indeed, the axis
ratio parameter q is a special case of the Fourier modes.
In both instances, only the shape of the model changes,
whereas the structural parameters (size, concentration
index, magnitude) retain their original meaning.
It is worth emphasizing that coordinate stretching by

Fourier mode is a self-similar remapping. This means
that the form and meaning of the radial profile func-
tions being modified do not change by this remapping,
i.e. our prior intuitions about the meaning of the pa-
rameters (e.g. Sérsic index n, size, etc.) in traditional
2-D fitting still apply. For instance, each model compo-
nent still has a single peak, and radially the profile falls
off according to one of the fitted functions such as Sérsic,
exponential, Nuker, etc., in every direction from the peak;
the peak does not have to be the geometric center if the
component is lopsided. The decline is monotonic, so it
is still meaningful to talk about, e.g., an “average” light
profile (e.g. Sérsic), with, say, an average Sérsic concen-
tration index n – no matter what the galaxy may look
like azimuthally. In this manner irregular galaxies can be
parameterized, because even they have an average light
profile. For instance, when the average peak of an irregu-
lar galaxy is not located at the geometric center, it has a
high amplitude m = 1 Fourier mode (i.e. lopsidedness).
Other high order modes can be used to quantify higher
degrees of asymmetry on top of lopsidedness.
The phase angles of the Fourier modes are also useful

information to keep in mind. Modes with the following
phase angles have the following symmetry properties:

• Symmetry about a central point: a1 = 0, regardless
of other mode phase and amplitude.

• For all modes m, there is reflection symmetry at:
φm = 0◦, ± 180◦

m . For m =even, this symmetry is
about both the major and minor axes. Whereas,
for m =odd, the reflection symmetry is only about
the major axis.

• For odd modes of m, there is additional reflection
symmetry about the minor axis at: φm = ± 90◦

m .

An irregular galaxy has angles that are “out of phase”
whereas regular galaxies have angles that are more “in

9

Fig. 7.— Examples of Fourier modes. Top: Low amplitude (am = 0.05) Fourier modes modifying a circular profile (q=1.0) with phase
angle φ = 0 degree. Bottom: High amplitude (am = 0.5) Fourier modes modifying an elliptical profile (q=0.5) with phase angle φ = −45
degrees.

10

phase” (i.e. reflectionally symmetric around either mi-
nor or major axis). Therefore, it is possible to quantify
various forms and degree of asymmetry by constructing
indices based on the amplitude and phase angles of the
Fourier modes. The most intuitively obvious asymmetry
index is the m = 1 mode, which captures the lopsided-
ness (AL) of a galaxy, i.e. the positioning of the bright-
est central region relative to the fainter outer region of a
galaxy:

AL = |a1| . (23)

Asymmetric galaxies are also characterized by overall de-
viation from an ellipse; thus, another intuitively useful
quantity to measure is the sum of the Fourier amplitudes:

AE =

N
∑

m

|am| . (24)

Asymmetric galaxies by definition have high AE . How-
ever, it is possible for galaxies with both high AE and AL

to be reflectionally symmetric; the degree of reflectional
symmetry may be an indicator for how well the galaxies
is relaxed. Reflection asymmetry is given by the index
AR:

AR=
∑

m=even |am| sin2
(

πm φm

180◦

)

+

∑

m=odd |am| sin2
(

πm φm

90◦

)

, (25)

where φm is in degrees. In this formulation, the higher
the reflectional asymmetry, the higher the index AR.
Used together, these three descriptors provide highly use-
ful ways to quantify the degree galaxies are irregular. For
instance, high values of AR and AL most likely imply
high global asymmetry in the intuitive sense. Whereas
a high value of AE with low AR implies high regularity,
but large deviation from an ellipse, such as edge-on disky
galaxies or a disky/boxy ellipticals.

Caveat in using Fourier modes. Because Fourier
modes are high order corrections to some intrinsic shape,
care should be taken when fitting them. For instance,
Fourier modes can be high order corrections to a perfect
circle (q = 1), or an ellipse (q < 1). In most instances, it
is the perturbation on an ellipsoid shape that is the most
interesting. Therefore, with the possible exception of the
first mode, high order Fourier modes should be used only
after finding an optimal solution with the classical ellip-
soid model. Otherwise, strong residuals can always be
locally Taylor expanded into Fourier modes which would
have high amplitudes. Likewise, high order modes are
quite sensitive to the presence of neighboring objects,
such as stars, overlapping galaxies. They ought to be
removed either by masking or simultaneous fitting.

Bending Modes Bending modes allows for curvature
in the model when the amount of curvature is less than
half a circle. The coordinate transformation (x, y) =⇒
(x′, y′) is obtained by only perturbing the y-axis (in a
rotated frame) in the following way:

y′ = y +
N
∑

m=1

am

(

x

rscale

)m

, (26)

where x′ = x, rscale is the scale radius of a model (i.e.
reff for Sérsic, rs for exponential, etc.). Some examples
of this perturbation are shown in Figure 8. Note that
m = 1 resembles quite closely to the axis ratio param-
eter, q. However, the m = 1 bending mode is actu-
ally a shear term, the effect of which is most easily seen
when it operates on a purely boxy profile C0 ∼ 2 (Fig-
ure 6a), shearing it into a more disky shape (see Fig-
ure 8d). The bending modes can be modified by Fourier
modes or diskyness/boxyness to change the higher or-
der shape of the overall model. This kind of coordinate
transformation again preserves the original meaning of
the radial profiles. Here, the object size parameter refers
to the unstretched size, i.e. projected onto the original
(x, y) Cartesian frame, as opposed to a length along the
curvature.

Coordinate Rotation I: Powerlaw - Hyperbolic
Tangent (α-tanh) Sometimes the isophotes of a
galaxy may rotate as a function of radius, as in the case
of spiral galaxies. To model the light profile, it is now
also possible to allow for coordinate rotation in Galfit.
Galfit allows for two types of coordinate rotation func-
tions, the powerlaw spiral (α-tanh), and the logarithmic
spiral (log-tanh). Both of these are coupled to the hyper-
bolic tangent in order to potentially generate a bar that
extends into the center. The exact functional form of the
rotation function is lengthy (see Appendix A), but the
schematic functional dependence of the powerlaw spiral
on the parameters is given by the following:

θ(r) = θout tanh
(

rin, rout, θincl, θ
sky
PA ; r

)

×
[

1

2

(

r

rout
+ 1

)]α

.

(27)
Figure 9 shows a hyperbolic tangent rotation function
for several different bar parameters (left), and a combi-
nation of bar parameters and the asymptotic powerlaw
slope α (right), where r is the radial coordinate system,
θout is the rotation angle roughly at rout. The bar radius,
rin, is defined to be the radius where the rotation reaches
roughly 20 degrees. This angle corresponds fairly closely
to our intuitive notion of bar length based on examin-
ing the images, and is not a rigorous, physical, defini-
tion. The inclination θincl is the line-of-sight inclination
of the disk, where θincl = 0 deg is face on and θincl = 90
deg is perfectly edge-on. As shown in Figure 10, a face-
on model does not necessarily mean that the outer-most
isophotes are round. Rather, the ellipticity of the outer-
most isophotes is related to the asymptotic behavior of
the rotation function, which asymptotes to a constant
PA beyond a radius of rout for a pure hyperbolic tan-
gent (α = 0, Figure 9a). The isophotes only appear
circular in the main body of the spiral structure when it
has a large number of windings. Figure 11 shows several
examples of bar and non-barred galaxies, with different
α values, sky inclination angle, and rotated to different

sky position angles (θskyPA). When the powerlaw index α
is negative, the spiral pattern can reverse course after
reaching a maximum value (see Figure 11). In summary,
the hyperbolic tangent powerlaw function has 6 free pa-

rameters, θout, rin, rout, α, θincl, θ
sky
PA . The thickness of the

spiral structure is controlled by the axis ratio q of the el-
lipsoid being modified by the hyperbolic tangent, or by

11

Fig. 8.— Examples of bending modes modifying a circular profile (q=1.0), and C0 = 0 (unless indicated otherwise). Top row: Low
amplitude (am = 0.05rm

scale
) bending modes. Bottom: High amplitude (am = 0.2rm

scale
) bending modes. Bending modes can be combined

with Fourier modes to change the higher order shape.

Fig. 9.— Hyperbolic tangent-powerlaw spiral angular rotation functions with outer spiral radius of rout = 100 pix. a) Examples of a
pure hyperbolic tangent spiral (α = 0) with different “bar” radii (rin). b) Examples with different bar radii and asymptotic powerlaw α as
indicated.

the Fourier modes that modify the ellipsoid. To create
highly intricate and asymmetric spiral structures, Fourier
modes can be used in conjunction with coordinate rota-
tion.

The “bar” radius (rin) is a mathematical construct.

Note that the “bar” term in the coordinate rotation
should be regarded only as a mathematical construct to
grant the rotation function as much flexibility as possi-
ble. This construct can reflect reality, but it does not
have to, and it often does not. For instance, mathe-
matically, a negative rin radius (Figure 9b) is perfectly

12

r in = 0 rout = 50 = 0inclθ

500 500 50050 50 50

50

0

50

50

0

50

50

0

50
90 180

450360270

720630540

45

Pure tanh spiral:

θ =out

Fig. 10.— Examples of pure (i.e. with powerlaw α = 0 or without logarithmic function) hyperbolic tangent coordinate rotation modifying
a elliptical profile with axis ratio q = 0.4. Note that all the figure panels share the same parameters as shown up top, external to the
figures. The spiral model has no bar. The numbers within each panel shows the amount of total winding (units in degrees) at the spiral
rotation radius of 50 pixels. Notice that outside r = 50 pixels, the rotation angle becomes constant, due to the rotation function being a
hyperbolic tangent, thereby creating the appearance of a flattened disk, even though there is not a separate disk component involved in
the model.

sensible because of the way Eqs. 27 and 28 (for logarith-
mic spiral, below) are defined: a negative rin just means
that the spiral rotation function has a finite rotation an-
gle at r = 0 relative to the initial ellipsoid out of which
it is constructed. When there is clearly no bar, the rin
parameter can become quite negative; in this case, one
should probably just hold rin fixed to 0. Furthermore,
often times, one may not wish to create a bar and a spi-
ral out of one smoothly continuous function for various
reasons, e.g. they may have different widths, the spiral
may not extend into the center, or the spiral may start
off in a ring. In these situations, one can “detach” the
bar from the spiral by using a truncation function (see
§ 6 and § 8.3.5), by instead creating a bar with a sep-

arate Sérsic, Ferrer, or other functions. When this is
done, a “bar radius” is still useful mathematically in the
coordinate rotation function, but it may bear no physical
relation to the physical bar.

Limitations of the spiral rotation formulation.
While the α-tanh rotation function works surprisingly
well for many spiral galaxies, there are several limita-
tions to the simple formulation. One limitation is that
the spiral rotation functions are smooth, so “kinks” in
the spiral structure cannot yet be modeled, even though
it is possible to do so by allowing for “kinks” in the
rotation function. Lastly, the spiral structure cannot
wind back onto itself, because that would require the
rotation function to be multi-valued. While it is possible

13

500 500 50050 50 50

50

0

50

50

0

50

50

0

50

α=0 α=0.3 α=−2.5r = 20 r = r =20 0

θ = 0

θ = 0

θ = 60

in in in

θ = 0

θ = 45

θ = 45

incl

sky
PA

incl

sky
PA

incl

sky
PA

α− tanh spiral:

= r

= r
out

in

Fig. 11.— Examples of powerlaw - hyperbolic tangent (α-tanh) coordinate rotation modifying a face on (tilt = 0 deg) elliptical profile
with axis ratio q = 0.4. The parameters of the rotation functions are shown on the top and right hand side of the diagram. The top panels
show the spiral rotation angle as a function of radius for the panels in the same column.

to do so, it is not yet implemented.

Coordinate Rotation II: Logarithmic - Hyper-
bolic Tangent (log-tanh) The winding rate of
spiral arms in late-type galaxies is often thought to be
logarithmic with radius rather than powerlaw. Thus,
Galfit also allows for a logarithmic-hyperbolic tangent
coordinate rotation function, which is defined as:

θ(r)= θout tanh
(

rin, rout, θincl, θ
sky
PA ; r

)

×
[

log

(

r

rws
+ 1

)

/log

(

rout
rws

+ 1

)]

. (28)

Like the α-tanh rotation function, the log-tanh func-
tion has a hyperbolic tangent part that regulates the
bar-length and the speed of rotation within rout. Be-
yond rout the asymptotic rotation rate is that of the
logarithm function, which has a winding scale radius

14

Fig. 12.— Logarithmic - hyperbolic tangent spiral angular rotation functions. a) Examples of different bar radius, and where the outer
hyperbolic spiral radius is rout = rin + 10 pix. The lower horizontal dashed line shows the rotation angle at the “bar” radius (rin). b)
Examples with different bar radii and winding scale radii rws as indicated, illustrating the degree of flexibility of the spiral rotation rate.
The rotation angle at rout is fixed to 150 degrees, as shown by the upper horizontal dashed line. The left-most, black, curve is close to
being a pure logarithmic function, recasted so that at r = 0, the rotation angle θ = 0.

of rws; the larger the winding scale radius, the tighter
the winding. Thus, like the α-tanh spiral, the log-
tanh spiral rotation function also has 6 free parameters:

θout, rin, rout, rws, θincl, θ
sky
PA . Note that in terms of ca-

pabilities, the α-tanh function can often reproduce the
log-tanh function and more. Therefore, the α-tanh is
probably a more useful rotation function in practice.
Note that Galfit does not allow for a pure logarith-

mic spiral because such a function has a negative-infinity
rotation angle at r = 0. Therefore, in Galfit, at r = 0
the rotation function reaches θ = 0 (Figure 12). Lastly,
it is also important to keep in mind that the meaning
of the “bar radius,” just as described in the section for
α-tanh rotation function, is a mathematical construct.

6. THE TRUNCATION FUNCTION

Truncation functions allow for a possibility to create
rings, outer profile cut-offs, dustlanes, or a composite
profile in the sense that the inner region behaves as one
function and the outer behaves as another. The trunca-
tion function can modify both the radial profile and az-
imuthal shape. A ring can be created by truncating the
inner region of a light profile. Likewise, when a galaxy
has spiral arms that do not reach the center, it can be
viewed as being truncated in the inner region.

6.1. General Principle

In Galfit each truncation function can modify one
or more light profile models. Also, any number of light
profile can share the same truncation function. The trun-
cation function in Galfit is a hyperbolic tangent func-
tion (see Eq. 7 in Appendix B). Schematically, a trun-
cated component is created by multiplying a radial light
profile function, f0,i(x, y; ...), by one or more truncation
functions, Pm or 1−Pn (depending on whether the type

is an inner or an outer truncation – see Eq. 7 of Appendix
B) in the following way:

fi(x, y; ...) = f0,i(x, y;xc,i, yc,i... qi, θPA,i)× (29)
m
∏

Pm (x, y;xc,m, yc,m, rbreak,m,∆rsoft,m, qm, θPA,m)×
n
∏

[1− Pn (x, y;xc,n, yc,n, rbreak,n,∆rsoft,n, qn, θPA,n)] ,

where, rbreak is the break radius where the profile is 99%
of the original, i.e. un-truncated, model flux at that ra-
dius. The parameter ∆rsoft is the softening length, so
that r = rbreak ± ∆rsoft is where the flux drops to 1%
that of an un-truncated model at the same radius (the ±
sign depends on whether the truncation is inner or outer).
The inner truncation function (Pm) tapers a light profile
in the inner regions of a light profile, whereas the outer
truncation function (1− Pn) tapers a light profile in the
wings.
The behavior of the hyperbolic tangent function is ideal

for truncation because it asymptotes to 1 at the break
radius r & rbreak and 0 at the softening radius r < rsoft,
and vice versa for the complement function. Thus, when
multiplied to a light profile f(r), the functional behavior
exterior of the break radii region have intuitively obvious
meanings. For example, as shown in Figure 14a, if a
Sérsic function with n = 4 is truncated in the wings
(shown in red), the core has exactly an n = 4 profile
interior to the rbreak radius (marked in vertical dashed
line), which is a free parameter to fit. Likewise, an n =
4 profile truncated in the core (green) has exactly an
n = 4 profile exterior to the outer break radius. Thus,
when one sums two functions of different Sérsic indices
n, Figure 14b, the asymptotic profiles of the wing and
core retain their original meaning, and there is very little

15

500 500 50050 50 50

50

0

50

50

0

50

50

0

50

θ

r r

r

in out

out ws

0 10

150

20 30

257 5.55

40

310

50

5.5

0 10

90

0

180

0

360

0

180

0

180

0

1802.5 1.0

5.5 5.5 5.5

0.1

101010

10 10

log − tanh spiral: θ = 0PA
sky

inclθ = 0

Fig. 13.— Logarithmic - hyperbolic tangent spiral (log-tanh) angular rotation examples, all face-on (θincl = 0), and θ
sky
PA

= 0 deg. The
top left panel shows the meaning of the rotation parameter values at the corners of each box. Like with the α-tanh spirals, the log-tanh
spiral can be tilted and rotated to any sky projection angle, or combined with Fourier modes to produce lopsided or multi-armed spiral
structures (not shown), and with truncation function to produce an inner ring or an outer taper. The top left panel figure, for all practical
purposes, is a pure logarithmic spiral with a winding scale radius Rws = 5 pixels.

crosstalk outside of the truncation region (denoted by
vertical dashed lines in Figure 14).
The use of the truncation functions is highly flexi-

ble. There can be an unrestricted number of inner and
outer truncation functions for each light profile model.
Furthermore, multiple light profile models can share the
same truncation functions. This is useful, for instance,
when trying to fit a dustlane (inner truncation), in a
fairly edge on galaxy that may affect both the bulge and
the disk components. Just as with light profile mod-
els, the truncation functions can be modified by Fourier
modes, bending modes, etc., independent of the higher
order modes for the light profile they are modifying.

6.2. Different Variations of the Truncation Function

Truncation models appear in many physical contexts,
e.g. dustlane, rings, spirals that do not reach the center,
joining a spiral with a bar, cut-off of the outer disk, etc..
To allow the truncation function to be intuitively to use
as the situations require, Galfit allows for several vari-
ations. In addition to inner and outer truncations, trun-
cation functions can share in the same parameters as the
parent light profile. There are radial and length/height
truncations, softening radius vs. softening length (de-
fault vs. Type 2), inclined vs. non-inclined (default vs.
Type b) truncations, and lastly, 4 different ways to nor-
malize the flux – the most intuitive choice depends on
how a profile is truncated. We now discuss each of these

16

Fig. 14.— Examples of hyperbolic truncation function on n = 4 and n = 1 Sérsic profiles. a) a continuous n = 4 model represented as
two truncated models of otherwise identical re, n, and central surface brightness, with truncation radii at r = 15 and r = 20 as marked
by the vertical dashed lines. The black curve is the sum of the inner and outer functions. This shows that, outside the truncation region,
there is very little “crosstalk” between the inner and outer components. b) a composite profile made up of an n = 4 nucleus truncated in
the wings, and an n = 1 truncated in the core with truncation radii r = 10 and r = 20. Note that the hump in the summed model would
give rise to a ring in a 2-D model.

variations in more detail, and Section 8.3.5 will discuss
how these options are specified in the Galfit input file
(see also EXAMPLE.INPUT).

Parameter sharing. In the most general form,
each truncation function has its own set of free parame-
ters: x, y, rbreak,∆rsoft, q, θPA. However, by default, the
x, y, q, and θPA are tied to the light profile model, and are
activated only when the user explicitly specifies a value
for them.

Radial (“radial”) vs. Length (“length”) or
Height (“height”) Truncations The most use-
ful type of truncation is one which has radial symme-
try to first order, i.e. where it has a center, an ellip-
ticity, an axis ratio. However, in the case of a perfectly
edge-on disk galaxy (“edgedisk” model), an additional
type is allowed that truncates linearly in length or in
height. For instance, a dustlane running through the
length of the galaxy has an inner height truncation. For
the “edgedisk” profile, Galfit also allows for a radial
truncation like with all other functions. The one draw-
back to height and length truncations is that they cannot
be modified by Fourier and higher order modes like the
radial truncations.

Softening length (“radial”) vs. softening radius
(“radial2”) Sometimes, instead of softening length
(∆rsoft), it is more useful for the fit parameter to be a
softening radius (rsoft), especially when one desires to
hold the parameter fixed. That is also allowed in Gal-

fit as a Type 2 truncation function, designated, e.g. as
“radial2”. The default option does not have a numerical
suffix.

Inclined (default, “radial”) vs. Non-inclined
(“radial-b”) Truncations A spiral rotation function

is an infinitesimally thin, planar, structure. Nevertheless,
it should be thought of as a 3-D structure in the sense
that the plane of the spiral can be rotated through 3 Eu-
ler angles, not just in position angle on the sky. When
a truncation function is modifying a spiral model, it is
therefore sometimes useful to think about the truncation
in the plane of the spiral model. When Fourier modes
and radial truncations are modifying a spiral structure,
the default (“radial”) is for the modification to take place
in the plane of the spiral structure. However, there are
some instances when that may not be ideal for some rea-
son (e.g. a face-on spiral may actually be ellipsoidal). In
those situations, one can choose “radial-b”, which would
allow a truncation function to modify the spiral structure
in the plane of the sky, even though the spiral structure
can tip and tilt as needed.
And, yes, the truncation function can be Type 2b (i.e.

“radial2-b”) as well.

Flux normalization. The most intuitive flux nor-
malization for a truncated is the total luminosity. Un-
fortunately, both the total luminosity, and the derivative
of the free parameters with respect to the total luminos-
ity are especially time-consuming to work out computa-
tionally, and there are generally no closed form analytic
solutions to the problem. Therefore, the alternative is to
allow for different ways to normalize a component flux.
The user may choose whichever one is more intuitive,
given the situation and the science task at hand. The
default way depends on the truncation type:

• Inner truncation: the flux is normalized at the
break radius. For a ring model, this represents the
outer radius of the ring, near the peak flux.

• Outer truncation: flux normalized at the center.

17

500 500 50050 50 50

50

0

50

50

0

50

50

0

50

Truncation Examples

a b c

d e f

g h i() () ()

()()()

() () ()

Fig. 15.— Examples of truncation functions acting on a single component light profile of various shapes. a) Inner truncation of a round
profile, creating a ring. b) The truncation function can be modified by Fourier modes, just like the light profile. c) The truncation function
can be offset in position relative to the light profile. d) The truncation function can act on a spiral model. e) The truncation can tilt in
the same way as the spiral. f) The truncation function can be modified by Fourier modes while acting on a spiral model. g) A round light
profile is being truncated in the wing by a pentagonal (Fourier mode 5) truncation function. h) A round light profile is being truncated
in the inner region by a triangular function (Fourier mode 3), and in the wing by a pentagonal function. i) A 3-arm, lopsided, spiral light
profile model is truncated in the wing by a pentagonal function, and in the inner region by a triangular function.

• Both inner and outer truncation: same as the case
for Inner truncation.

However, there are many situations when the default
is not desirable. Instead, the user can choose the radius
where the flux is normalized, using the same scheme dis-
cussed in the introduction to Section 4. To be pedagogi-
cal, we explicitly show here the normalization for just the
Sérsic function, and allow an user to infer the analogous
relation for other functions:

• function : default (e.g. “sersic”, “nuker”, “king”,
etc.). See above.

• function1: flux normalized at the center r = 0 (i.e.

Σ0). A function which is given originally by forig(r)

is now defined as: fmod(r) = Σ0
forig(r)
forig(0)

. For the

Sérsic profile (i.e. called by “sersic1”), the profile
function is redefined in the following way, written
explicitly:

fmod(r) = Σ0

exp

[

−κ

(

(

r
re

)1/n

− 1

)]

exp [κ]
. (30)

For the Ferrer, Gaussian, King, Moffat, this corre-
sponds to functions as written in Section 4.

18

• function2: flux parameter is the surface brightness
at a model’s native size parameter (parameter 4
of the light profile model). For a Sérsic profile,
called by “sersic2”, this means the effective radius

re. So, fmod(r) = Σeff
forig(r)

forig(reff)
. For example, a

Sérsic profile now has the following explicit form:

fmod(r) = Σeff exp

[

−κ

(

(

r

re

)1/n

− 1

)]

. (31)

For the Sérsic, exponential, and Nuker, profiles,
this corresponds to functions as written in Sec-
tion 4.

• function3: flux parameter is the surface brightness
(Σbreak) at the break radius rbreak. This is the most
useful situation when a truncation results in a large
scale galaxy ring, so that the surface brightness
parameter corresponds closely to the peak of the
light profile model. When the truncation is not
concentric with the light profile model, this kind
of normalization is not very intuitive. For ”radial”
truncation, rbreak is parameter 4, whereas for ”ra-
dial2”, rbreak is parameter 4 for outer truncation,
and parameter 5 for inner truncation. When “ser-
sic3” option is chosen, the rbreak parameter comes
automatically from the first truncation component
that a certain light profile model is associated.

In our example of the Sérsic profile, fmod(r) =

Σbreak
forig(r)

forig(rbreak)
. For example, a Sérsic profile now

has the following explicit form:

fmod(r) = Σbreak

exp

[

−κ

(

(

r
re

)1/n

− 1

)]

exp

[

−κ

(

(

rbreak
re

)1/n

− 1

)] . (32)

Figure 15 demonstrates just some of the possibilities
allowed when fitting truncations. In addition to the reg-
ular ellipsoid shape, the higher order modes like disky-
ness/boxyness parameters, bending modes, and Fourier
modes can also modify the shape of the truncation func-
tions. One can also use the truncation function on a spi-
ral model, on models with Fourier and bending modes,
and diskyness/boxyness models, some of which are shown
in Figure 15d, e , f, & i. When a truncation function acts
on a spiral component, it can do so either in the plane of
the disk (“Type a”) or in the plane of the sky (“Type b”,
e.g. “radial-b”). While the default is in the plane of the
disk, the parameters are more intuitive in Type b cases
when the disk is tilted and rotated.

6.3. Caveats about using the truncation function.

The use of truncation functions should be carefully su-
pervised because unexpected things can happen, such
as the size or the concentration index of a component
can grow without bound. This behavior is due to the
fact that there are degeneracies between the sharpness of
truncation and the steepness/size of the galaxy. There-
fore, truncation functions should only be used on objects
that clearly have truncations.

When two functions are joined by using a truncation
function, the cross-talk region is located in between the
two truncation radii: it is worth bearing in mind the defi-
nition that at the break and softening radii, the fluxes are
99% and 1% that of the same model without truncation,
respectively. In other words, the larger the truncation
length, the larger the cross-talk region. Therefore, when
one (or more) of the parameters rbreak, rbreak + ∆rsoft,
or rsoft is either too small (. few pixels) or larger than
the image size, it probably indicates that profile trun-
cation parameters are not meaningful. Rather, it more
likely reveals the fact that there is a mismatch between
the light profile model and the actual galaxy profile.

7. RUNNING Galfit

There are two ways to run Galfit, by either provid-
ing a template file on the command line or through an
interaction menu. Providing a template file to Galfit

on the command line is the easiest way. In the future,
an interaction menu may not be available. Once Galfit

starts going, it does not care when and how you quit.
To quit abruptly, hit control-c at anytime at your plea-
sure, but note that the results will not be saved. In this
section, I will describe several ways to run (and quit).

7.1. Galfit Optional Flags

When starting Galfit on the command line, several
flags are available, and the list of flags are summarized
using the command:

> galfit -help

The options are:

-noskyest (See Section 8.1, Item C)
-skyped n
-skyrms n
-outsig

-o1 (See Section 8.1, Item P)
-o2
-o3

7.2. The Template File

Galfit is completely menu driven, and the menu can
either come via a text file template (easy! – this is the
way to go), or it can be filled in manually (tedious! – not
a good way to go). The menu items will be more fully
described in § 8.
Figure 17 below shows an example of theGalfit input

(template) file. When you start Galfit without a tem-
plate file, you will see a similar screen except the entries
are blank. You can enter everything interactively on the
command line of Galfit – this can be quite tedious if
you have a long object list, but it is certainly possible
(§ 7.4 will show you how). After the menu Item P, the
length of the list is flexible, and depends on how many
components you want to fit. You can add or remove the
number of components as you deem necessary.
In the input file, things after hash marks “#” are com-

ments, and are always ignored by the program. Blank
lines are also ignored, and the column alignment you see
is optional (purely aesthetic). There is pretty much no
error checking to catch problems in the input file, so one

19

should stick to the following format pretty closely. For
example, in the input file, do not modify “3) xxx” (note
the spaces), to look like “3)xxx” (bad spacing). Gal-

fit does not care how the columns are aligned (vertical
alignment is only for aesthetics), as long as they are in
the proper sequence. The order of the rows is also ar-
bitrary for the image parameters and within each object
block (because each row has a unique ID except for the
objects). In fact, the image parameters A-P can appear
anywhere in any row. Everything else about the format
should be pretty intuitive. If there are errors in the in-
put file, Galfit may not complain about them and may
simply crash.

7.3. The Easiest Way to Run Galfit : Reading in a
Template File

7.3.1. From the Unix/Linux Prompt

To facilitate fitting with minimal interaction, once you
have a pre-formatted text file shown in Figure 17, the
typical Galfit session is just a single step. On the com-
mand line, type:

> galfit input_file_name

The example shown below (Figure 17 fits a galaxy with
a PSF, a Sérsic, exponential disk, and a Nuker model,
while holding the sky level constant at 2 counts (ADU).

7.3.2. From Within Galfit Prompt

The second way to run Galfit is by typing at the
UNIX/LINUX command prompt:

> galfit

If you don’t have a prepared input file, ignore the first
question by hitting return. This brings you to the Gal-

fit prompt where you can edit object and image param-
eters manually. The Galfit prompt looks like:

Enter item, initial value(s), fit switch(es) ==>

Below, I will not bother to re-show the prompt; all com-
mands issued are assumed to come after that generic
prompt.
At the Galfit prompt, you can read in one or more

template files. To do so, simply type:

t file_name

or

t

followed by a return. Be careful about reading in two or
more input files: while additional models will be added
to the pre-existing file, the parameters A-P, i.e. input
data image, output file name, noise file, etc., will take on
values of the newest input file. (Note: most of the time
you won’t use this option anyway, but you can.)

7.4. OPTIONAL Interactive Command Line Options
While in Galfit – a.k.a. “Running Galfit the

Hard Way”

Note: you can bypass this entire section and go on to
§ 8.1 if you already have your own input file. The easiest
way to run Galfit is to directly edit a parameter file
and feed it into Galfit on the Unix command line, as
in § 7.3.1
You can runGalfit entirely via theGalfit command

line. The one possible benefit of using the interaction
menu is to check on your input file format, which has
been causing Galfit to crash for no apparent reason. If
so, here are the things you can do on the command line:

(Re)displaying the Menu To display or redisplay
the menu after new changes have been made, hit “r”.

Adding New Objects, Changing Initial Parame-
ters, Deleting Objects To add a new object on the
command line, hit 0 or N, followed by the name of the
model you want to add. For example, when you get the
Galfit prompt, type:

0 devauc

will add a de Vaucouleurs function. Initially, all the pa-
rameters are set to 0 which you can then change.
To change the value of an item, enter the following

on the Galfit command line in consecutive order, sep-
arated by one or more spaces only:

1. the item number/alphabet (without the right
parenthesis),

2. the initial value, then

3. optionally followed by whether to hold that param-
eter fixed or not during the fit. To hold a parameter
fixed, use the value 0; to fit, use 1.

Here are 3 examples that produce some entries shown in
Figure 17:

a v.fits (See Item A -- Changes the
input file name to v.fits.)

h 300 440 330 470 (See Item H -- Changes the
4 corners of the fitting box)

1 369.4 395.3 1 1 (Change the initial x,y position
to (369.4,395.3), and allow both
to vary)

If you have more than one model and, for instance, you
want to change parameters for model <number>, you
have to first designate it by typing m <number>. Then
all parameters you specify to change will only affect that
component. So, for example, to change the magnitude
(3rd parameter) of object 4 to 19th magnitude, you have
to first enter:

m 4

then:

3 19.0

20

Right now the program does not check to see if the
parameters you entered make any sense or even if they’re
valid numbers.

Adding a Non-Classical Fitting Parameter (e.g.
C0, Fourier Mode, Coordinate Rotation, Trunca-
tion) The menu items by default only show the so-
called “classical” parameters commonly associated with
2-D galaxy fitting. However, there are additional free
parameters that can add even more flexibility to Gal-

fit: the diskyness/boxyness parameter C0, the Fourier
modes, bending modes, coordinate rotation and profile
truncation. To minimize clutter, these parameters would
only appear in the menu when they are specified to be fit
by being given a value. This simplifies the use of Gal-

fit. Partly, the scheme is to underscore the fact these
parameters are higher order corrections to a model. As
such, they should only be “turned on” after a solution
has first converged for the “classical” parameters.
The non-classical parameters will only appear when

the user assigns to them a value (even a value of 0). For
instance:

c0 0.1 1 1
F3 0. 0. 1 1
r0 power

Deleting A Non-Classical Parameter These non-
classical parameters can be deleted by setting both the
values and the toggle flags equal to 0. To disable coordi-
nate rotation, set R0 equal to ”none”. For instance:

c0 0. 0 (Removing diskyness/boxyness)
F7 0. 0. 0 0 (Removing 7th Fourier mode)
r0 none (Disabling coord. rotation)

Once a parameter is deleted or the value is held fixed to
0., it will go back into hiding unless called upon.

Deleting an Object To delete an object, use the x
key, followed by the object number. For example,

x 3

deletes the 3rd model from the fit.

Start Fitting Once you’re done with enter-
ing/changing all the parameters, to start fitting, hit “q”.

8. Galfit MENU ITEMS

This section describes the menu items (Figure 17) in
a little more detail. The Galfit menu is separated into
two sections: the image parameters (the top half of the
menu, i.e Items labeled A-P) and the object fitting pa-
rameters (the bottom half, i.e. Items numbered 0-10 and
Z). There is only one set of image parameters A-P, but
there can be an arbitrary number of object parameters
depending on what you want to fit simultaneously. In
principle there is no limit to the number of fitted com-
ponents, except by the computer memory and the com-
putation speed.

8.1. The Image Parameters A-P

Item A – Input Data Image: The input data image
is a FITS file. It must be a single image and not an image
block. If the user does not provide an input image, or if
the input image is not found, then a model image will be
created using the input parameters, having an exposure
time of one second.

Item B – Output Image Block: The output im-
age block is a 3-D image cube in FITS, created using
CFITSIO (Pence 1999). The image data cube has 3 lay-
ers: blahblah.fits[1], blahblah.fits[2], and blahblah.fits[3].
The first image is the postage stamp sized region speci-
fied in Item I (see below). Image [2] is the final model of
the galaxy in that region. Image [3] is the residual image
formed by subtracting [2] from [1]. Image [0] is blank.
The final parameters obtained in the fit are stored in

the FITS header of image [2]. If you are dumping the
final parameters into a table using a script, this is an
easier place to obtain them instead of trying to dissect
“fit.log.”
Note that if Item Z (see below) is set to 1 for any

component, that component will still be optimized, but
the model for that component will not be constructed in
the output image [2]. The residual image [3] will also
reflect that fact, since image [3] is created by subtracting
image [2] from [1].

Item C – Input Weight (Sigma) Image: A sigma
image is a map of the standard deviations of the data
image, as defined by Equation 1, which is derived based
on assumptions about Poisson (more precisely, Gaussian)
statistics. It is used to give relative weights to the pixels
during the fit, and it should not be arbitrary. More pre-
cisely, σ(x, y) should be one standard deviation of counts
at pixel position (x, y) for a noiseless underlying parent
distribution, i.e. image. That means that, in principle,
σ(x, y) can be known precisely only if we have an infinite
signal-to-noise image of the source. Because we never
have this, the sigma image is always an approximation.
This rather subtle point can be made more clear by

way of a simple example: an image taken of a constant
sky background 〈sky〉 has only one value of σ across the

entire image, and that value σ ∝
√

〈sky〉. The propor-
tionality factor depends on the units of the ADU. The
pixel-to-pixel fluctuation one sees in a sky image comes
about because each pixel value is randomly drawn from
a Poisson distribution with the same σ for all the pixels,
appropriate to a given mean sky value. So, in this exam-
ple, the sigma image for Galfit should be a single value
across the whole image. For data having real objects,
it is somewhat more difficult to obtain the underlying
σ(x, y) because the flux distribution is no longer con-
stant. Nonetheless, this concept suggests an approach
to take for creating a sigma image, which is described
below.

If the sigma image is not provided. If a sigma image
is not provided or the name is unrecognized, then it is
generated internally by Galfit based on the GAIN (or
ATODGAIN) and RDNOISE parameters taken from the
image header (see § 2.1). If you let Galfit do this, the
data image ADUs and the image gain should have units
such that [GAIN]× [ADU] = total electrons collected at
each pixel.

21

The background sky is important for estimating the
sigma image because it is a source of noise. As far as
statistics are concerned, there is no distinction between
thermal background due to the telescope environment
and that due to a natural sky brightness. To determine
what the sky RMS noise is, Galfit first computes a
filtered median after removing ±20% outliers of bright
and faint data points. For this to work, the image should
in principle have have 60% of empty regions not occupied
by a source of any kind. From empty regions, the RMS is
computed and added in quadrature to the flux variance of
the data, after removing the estimated sky background.
Schematically, therefore, the RMS image is obtained

in the following manner:

σ(x, y) =
√

(fdata(x, y)− 〈sky〉) /GAIN + σsky(x, y)2

(33)
In Eq. 33, the readnoise term is absorbed by the esti-
mation of the sky RMS σsky(x, y) in [ADU], so the RD-
NOISE parameter is not used.
The user has the option to provide an estimated sky

pedestal and sky RMS by specifying on the command
line, respectively:

galfit -skyped ADUs <file>
galfit -skyped ADUs -skyrms ADUs <file>

The sky pedestal here is an estimated value. Even though
this should in principle be the same as the sky parameter
one is allowed to fit for, the σ-image must be generated
before fitting is done, therefore does not have the benefit
of hindsight. Note that when providing the sky RMS,
the sky pedestal must also be provided.
The user also has the option to not allow Galfit to

estimate the sky pedestal, by specifying:

galfit -noskyest <file>

This is not the same thing as setting ”-skyped 0” on the
command line. When the sky is not estimated the sky
RMS is determined from the image RDNOISE parame-
ter, and added in quadrature sum with the noise of the
flux pixel value, scaled directly to [electrons] using the
GAIN parameter. This is useful if the user wants to see
how much the uncertainty in the sigma image affects the
fitting results.
To see the σ-image generated byGalfit, one can spec-

ify the following on the command line:

galfit -outsig <file>

Galfit will then produce a file called “sigma.fits.”

Details to keep in mind when providing a sigma image.
There are several important things to keep in mind if one
intends to create one’s own sigma image. Indeed, many
of the odd behaviors reported back to me about Galfit

were by people who supplied their own version of the
sigma image, which were not appropriate in the sense of
Equation 1. Such odd behaviors include simple fits that
last for hundreds of iterations, wild swings in parameter
values between each iteration, extremely large/small χ2

ν
values, or convergence on solutions that make no sense.
These issues may be avoided if one keeps in mind the
following when supplying a sigma image:

• Visual Inspection. Before using a sigma image,
please display it to see that it bears some resem-
blance to the data, modulo weird scaling, since, af-
ter all, the σ-image is derived directly from the
data! It is known that some algorithms (e.g. Mul-
tidrizzle) output a “weight image” that is either
an exposure time map, or a map of the number
of images combined. Either kind of those “weight
image” is incorrect and has been known to cause
Galfit to go haywire.

• Units. The σ-image should have the same units
as the input data image. If the data pixels are in
[counts sec−1] then so must the weight image be
in [counts sec−1]. Otherwise, the χ2

ν value that
Galfit outputs will not make much sense, even
if it might not affect the solution or how Galfit

converges on it.

• Noise. The σ-image is a noise map of the data.
However, if one thinks about it, it usually ought not
itself be noisy! Unfortunately, when one creates a
sigma image from a noisy image, the map also looks
noisy. There is not much one can do about this.

It is important to keep in mind that often one should
not have to provide his/her own sigma image if the GAIN
and RDNOISE parameters are in the image header, and
ADU ×GAIN = total electrons detected so that Eq. 33
applies. When in doubt, first let Galfit generate a
σ-image internally, even if the ADU normalization is
weird. The effect of wrong units by a multiplicative con-
stant (as sometimes the case if the units are in [Counts
sec−1]) only makes the normalization of χ2

ν rather screwy.
But it is the relative weights between the pixels that gov-
ern convergence, which is not affected by an uncertainty
in χ2 normalization.

Item D – Convolution PSF, and (optional) CCD
Diffusion Kernel: The observed PSF image, in FITS
format, is required only if one wants to convolve a model
with the PSF or fit a PSF to a star. Otherwise, it is op-
tional. The diffusion kernel is also optional, and is mostly
associated with oversampled HST PSFs that are created
using the TinyTim software for CCD imagers such as
WFPC, WFPC2, STIS, and ACS. The reason charge dif-
fusion kernel is considered when using TinyTim is that,
physically in CCDs, the neighboring pixels are not com-
pletely insulated from one another because the potential
wells are not infinitely deep. Therefore, when incoming
photons excite the release of electrons in a substrate, the
electrons may travel into neighboring pixels. The effect
of this diffusion causes an image to be slightly blurred.
This blurring is entirely a detector artifact, and adds to
the blurring caused by telescope and atmospheric optics.
If the PSFs are created through natural stars, or if the

TinyTim PSF is created to be 1-time oversampled, one
can ignore the CCD diffusion kernel because the kernel
is already included. However, if you created a twice (or
more) sub-sampled PSF using TinyTim and your data
image is only one-time sampled, then you may want to
provide the diffusion Kernel (see below).
The peak flux of the PSF image should be at the geo-

metric center when the number of pixels on a side is odd.
However, if the number of pixels N on a side is even, the

22

peak should be located at pixel position (N/2+1). If the
peak is anywhere else, the model that Galfit generates
will be systematically offset in position by the difference
from the predefined center. This is important to keep in
mind when the convolution box is small: you may want
to make sure to refit the image with a large convolution
box after the solution has first converged.
As mentioned above, the input PSF can be accompa-

nied by a CCD charge diffusion kernel, which is simply a
text file. It is usually only needed if one has created an
oversampled HST PSFs using TinyTim. If the PSF has
unit sampling, the diffusion is applied by TinyTim auto-
matically, so Galfit will not re-apply it even if a kernel
is specified. The appropriate charge diffusion kernel can
be found under the “COMMENTS” section in the PSF
image header created by TinyTim. Here is a typical ex-
ample of what the diffusion kernel input file should look
like:

0.012500 0.050000 0.012500
0.050000 0.750000 0.050000
0.012500 0.050000 0.012500

Table 1: An example of the WFPC2 CCD
charge diffusion kernel:

The charge diffusion convolution is applied only after the
model image has been convolved and rebinned (see next
Item) down to the original resolution of the HST im-
agers. Note that if the science data has been drizzled
to a platescale other than the original instrumental pixel
scale, it makes no sense to apply the diffusion kernel (see
Item E for further explanation). Also, note that observed
HST PSFs are sometimes slightly broader than the PSFs
generated by TinyTim, which may be caused by a small
amount of spacecraft jitter.
NOTE: If the PSF image is sitting on top of a non-

zero sky background, then the sky should be removed. Or
else, when convolved with a model, the region inside the
convolution box would seem to be elevated compared to
the region outside of the box. The PSF does not have
to normalized – Galfit will do so automatically. A DC
offset will also appear if the PSF size is too small, because
the image cuts the PSF off in the wings. However, in this
case, the sky pedestal is not the problem. Instead, one
should enlarge the PSF size.

Item E – PSF Fine-Sampling Factor: When the
PSF is not Nyquist sampled the Fourier transform is
not uniquely invertible. Therefore, in principle all data
should be Nyquist sampled (i.e. FWHM & 2 pixels) for
convolution purposes. If one does not have a Nyquist
sampled science image, sometimes one can obtain a rea-
sonably accurate oversampled (i.e. more finely sampled)
PSF through observational (e.g. dithering) or numeri-
cal (e.g. TinyTim) techniques. For HST images, there
is a software that can generate oversampled PSFs. The
other alternative is to combine dithered sub-exposures
of bright stars during an observation, or by interpolating
to get an “intrinsic” PSF by using multiple stars in the
same image, e.g. with globular clusters.
Galfit can deal with situations where the PSF pro-

vided is more finely sampled than the data, i.e. the PSF
has a finer pixel scale (arcsec/pix) than the data. Gal-

fit will internally produce models at the same sampling
factor as the input PSF, perform convolution, and finally
rebin the results to the data pixel scale.
The PSF fine-sampling factor for Item E can only be

an integer value. It is a ratio between the platescale (arc-
sec/pix) of the PSF and the DATA, observed under the
same seeing condition (i.e. optics convolved with atmo-
sphere). If they have the same platescale + seeing, the
factor is 1.
A TECHNICAL MEMO REGARDING HST CCD

DATA, i.e. for WFPC2, STIS, WFPC, and ACS, but
not NICMOS: If the PSF being used is created from nat-
ural stars, or if the TinyTim PSF is 1-time sampled, there
is no need to apply the CCD diffusion kernel. However,
if the PSF is created by TinyTim and it is N-times over-
sampled (N ¿ 1), TinyTim provides a diffusion kernel for
you, but it does not actually apply it. The reason is that
the kernel should only be applied after you bin the PSF
down to 1-time sampling. So, what do you do about the
diffusion kernel if your data are drizzled to 2× sampled so
you want to keep your TinyTim PSF on the same grid?
One obvious solution is to just transform (i.e. interpo-
late) the diffusion kernel the new plate scale and apply
that. If you decide to do this, you can apply the kernel
outside of Galfit instead of inside, since the data and
the PSF have the same sampling factor. This will make
Galfit run faster as it doesn’t have to apply the same
kernel each time.

Item F – Bad Pixel Mask: Sometimes one may
want to exclude pixels from a fit. This bad pixel map
can be either a FITS file or an ASCII text file. If the
file is an ASCII, it should have 2 columns listing x and y
coordinates (without a comma separator) of all the bad
pixels. If you want to mark out an irregularly shaped
region and have a list of polygon vertices, you can run a
program called “fillpoly” to create points inside the poly-
gon. See Galfit website on Frequently Asked Technical
Questions to get a copy. The output file can then be read
directly into Item D.
If the dust map is a FITS image, the bad pixels should

have a value of > 0. while good pixels have a pixel value
of 0.

Item G – Parameter Coupling: Parameter con-
straint/coupling file (ASCII) is optional. Parameters can
be held fixed to within a certain range or can be cou-
pled between different components by providing this file.
An example of the format is found in the file EXAM-
PLE.CONSTRAINTS. When constraints are imposed it
is unclear what the errorbars mean, if anything. Further-
more, it may prematurely force the solution to wander off
into a corner of the parameter space from which it is dif-
ficult to wander out. So use constraints at own risk! See
§ 11 regarding parameter constraints for more details.

Item H – Fitting Region: The image region to fit.
Galfit will cut out a section of the image specified by
“xmin xmax ymin ymax” from the original image and
then minimize χ2 only over that region. The fitting
region should be large enough to include a significant
amount of background sky, especially if the sky is a free
parameter in the fit.

Item I – Convolution Box Size: The convolution
box size and the PSF image size are the two most impor-
tant factors in determining the running speed of Galfit.

23

Convolution can take up ¿ 80% of total execution time
for a small image. There is one box for each model com-
ponent, centered on the model, so that all components
will have their centers convolved with the PSF. This is
much more efficient than convolving the entire image. Of
course, if one wants to convolve the entire image, one can
still set the convolution box to the fitting region size or
even larger, but this is often not the most efficient way
to go.
In principle the box size should be just big enough so

that the seeing does not affect your galaxy profile outside
of the box (something like 20 or more seeing diameters,
depending on how extended the PSF wing is.)

Item J – Magnitude Zeropoint: The magnitude
zeropoint is used to convert pixel values and fluxes into
a physical magnitude by the standard definition:

mag = −2.5log10(ADUs/texp) + mag zpt. (34)

The exposure time is taken from the EXPTIME image
header without prompting the user. So please make sure
the EXPTIME header reflects how the data pixel have
been normalized. Unfortunately, it is rather common for
the EXPTIME to show the total integration time, but for
the image ADUs to be normalized to one second. One
reason why this may happen (especially in infrared data)
is that not all pixels may have the same exposure time. If
the “EXPTIME” keyword is not found, Galfit assumes
the exposure time to be 1 second. If you want Galfit

to generate a σ(x, y) image internally and the ADUs are
in [counts/sec], please multiply EXPTIME back to the
image and update the EXPTIME header accordingly.

Item K – Plate Scale: The plate scale should be in
units of arcseconds, and is used only to convert fluxes
into surface brightness units [mag/arcsec2] for the King
and the Nuker profiles (see Eq. 35). Note that the sizes
of objects (re, rs, rb, and FWHM) in Galfit are quoted
in [pixel] units rather than in [arcsec] units.

µ = −2.5log10

(

ADUs

∆x∆y texp

)

+mag zpt. (35)

Item O – Interaction Window: Sometimes it is
useful to quit out of a fit early (and save results), pause
a fit, extend the number of maximum iterations (default
= 100), etc.. The interaction window lets you do this.
There are three options:
In the “regular” option there is no interaction possible.
In the “both” option, a green xterm window will pop

up to show you what commands one can issue to Galfit

during fitting. The commands (see § 6) are issued by
typing a single letter in the green window, not in the
fitting window (except when the fit is paused, or when
one is entering new number of iterations).
In the “curses” mode, one can issue the same com-

mands as the “both” option. But all the interaction is
done in the fitting window instead of a separate window.
For Mac OS X users only: To use the “both” mode,

you must run Galfit in X11 (xterm) mode, otherwise
it would complain about not being able to open a window.
If not in X11, set this parameter to “regular.”

Item P – Options: If this option is set to 0, Galfit

will run normally. Once it finishes running, it will create
the standard image block (data, model, residual) of the
best fit4. If the option is set to 1, Galfit will create a
model image based on your input parameters and imme-
diately quit. If the option is set to 2, Galfit will create
an image block (data, model, residual) based on the cur-
rent fitting parameters, and quit. If the option is set
to 3, Galfit will create an image block “subcomps.fits”
where each image slice after the first (data) is the indi-
vidual components used in the fit. Alternatively, one can
do these things on the command line by doing:

galfit -o1 <file> (model only)
galfit -o2 <file> (standard img. block)
galfit -o3 <file> (subcomps)

8.2. Classical Object Fitting Parameters 0-10, and Z

Galfit allows for a simultaneous fitting of arbitrary
number of components simply by extending the following
object list (0-10, Z) for each component. Items 1-10 are
the initial rough guesses at the object parameters, and
they don’t have to be accurate. But of course, the more
complicated a fit is, i.e. the more number of components,
the better the initial guesses should be soGalfit doesn’t
wander off to never-never-land.
The 2nd column in Items 3-10 are initial guesses for

the parameter and the 3rd column is where one can hold
the parameters fixed (0) or allow them to vary (1). Note
that items 1 and 2 (xc, yc) are on the same line (except
for fitting the sky).
Below is a more detailed explanation of what each of

the parameters means:

Item 0: Object name. The valid entries are: sersic,
devauc, nuker, expdisk, moffat, gaussian, sky, psf.
Items 1, 2: X and Y positions of the galaxy in pixels.

For the sky, Items 1 and 2 are on consecutive lines instead
of the same line. For the sky Item 1 is the DC offset in
it ADUs, and Item 2 is the gradient in the X-direction.
Item 3: For Sérsic, de Vaucouleurs, and exponential

disk this is the integrated magnitude of a galaxy. For
Nuker and the King profile this is the surface brightness
(mag/square arcsec) calculated using the pixel scale from
Item K. For fitting the sky, this is the sky gradient in the
Y-direction.
Item 4: Scalelength of the fitted galaxy in PIXELS,

not arcseconds. The scale length is measured along the
semi-major axis.
Item 5: For Sérsic it is the concentration index n.

For Nuker, it is the powerlaw α. For King, it is the
truncation radius beyond which the fluxes are 0. For all
other functions it is ignored.
Item 6: For Nuker, it is the powerlaw β, and for King,

it is the powerlaw α. For all other functions, this param-
eter is ignored.
Item 7: For Nuker, it is the powerlaw γ.
Item 9: The axis ratio is defined as semi-minor axis

over the semi-major axis: for a circle this value is 1, for
an ellipse this value is less than 1.
Item 10: The position angle is 0 if the semi-major axis

is aligned parallel to the Y-axis and increases toward the
counter-clockwise direction.

4 ”Best fit” does not necessarily mean a ”good fit”

24

Item Z: If you want this model to not be subtracted in
the final image, set this to 1. If you want to subtract this
model from the data, set this to 0. When this parameter
is set to 0 for all the objects, you will get a residual
image. The default is 0. Note that this does not affect
whether this component is optimized, just whether or
not it shows up in the output images. This is useful for
showing subcomponents in the residual image in a multi-
component fit.

8.3. Non-Classical Fitting Parameters

Non-classical parameters allow Galfit to break from
ellipsoidal axisymmetry. They are absconded from view
if they are not used in the analysis. The following pa-
rameters are non-classical: diskyness/boxyness, Fourier
modes, bending modes, coordinate rotation, and trunca-
tion. Another reason for keeping the non-classical pa-
rameters from view is to emphasize the higher-order na-
ture of these parameters. This means that it is often nec-
essary to first let Galfit converge on a classical, ellip-
soidal, solution, before turning on the non-classical ones.
In other words, the simplest and most correct way to
fathom these parameters is to consider them as higher
order perturbations on the best fitting ellipse, even if
the perturbations can be quite large. In the menu or
template file, the non-classical parameters usually should
come at the end of the component that one is inter-
ested in modifying. The only exception is the truncation
model, which can appear anywhere in the object list, and
behaves like a separate component.
Note that a single component model can be altered by

any one or all of the following functions simultaneously.
For example, one can modify an ellipse into a spiral,
which can be perturbed by Fourier modes, and truncated
either in the inner or outer regions, or both. Those trun-
cation functions may even be modified by Fourier modes,
bending modes, and/or the diskyness/boxyness parame-
ter. The degree of complexity that is allowed may seem
a bit dizzying at first. But, just because such complexity
is allowed does not mean that using them all simultane-
ously from the start is a good idea. Proper use of these
capabilities requires some training and human supervi-
sion to produce the most physically meaningful solution.

8.3.1. Diskyness and Boxyness

The effect of diskyness/boxyness parameter on a per-
fect ellipse is shown in Figure 6. The diskyness/boxyness
parameter can be used with Fourier modes, though it is
not advisable because of parameter degeneracy issues.

Item C0 – Diskyness/Boxyness Amplitude C0:
When C0 < 0 the ellipsoid appears disky, and when C0 >
0, it appears boxy. The following specifies its use in the
input file:

c0) 0. 1

or on the command line: c0 0. 1

8.3.2. Fourier Modes

The Fourier modes allow the possibility to create com-
plex shapes (Figure 2). Just like diskyness/boxyness,

Fourier modes are higher order corrections to a model.
As such, it is not wise to “turn them on” when most of
the other parameters are still rough, because far away
from an optimum solution, large initial residuals would
look like high power Fourier modes. This is especially
true for the m = 2 mode, which is quite degenerate with
the axis ratio q. The recommendation for using Fourier
modes is to first run Galfit without them. Once a so-
lution has been found, the Fourier modes may be used to
improve the fit, and to quantify the degree of deviation
from an optimum model.

Item FN – Fourier mode amplitude and phase
angle: Each Fourier mode has two free parameters,
the amplitude and phase angle as given in Equation 22.
The mode amplitude is in units of the fractional radius,
whereas the phase angle has units of degrees. The phase
angle is zero in the direction of the semi-major axis of the
best fitting ellipse, and is reported only in the cardinal
range.
To activate Fourier modes, one can specify something

like the following, which enable the 3rd and 2nd Fourier
modes:

F3) 0. 0. 1 1 # Fourier mode m=3
F2) 0. 0. 1 1 # Fourier mode m=2

Note that holding the amplitude fixed to 0 for any mode
will effectively turn off that Fourier mode, making it dis-
appear from the menu. One can employ an unrestricted
number of Fourier modes, and some may be skipped.
However, only the first 6-10 modes are useful. The higher
the mode one uses, the more likely that the fit is sensitive
to neighboring objects.

8.3.3. Bending Modes

Bending modes allow the possibility for the model to
shear and bend (like a banana), see § 5, Figure 3, which
are otherwise not possible to model using Fourier modes.

Item BN – Bending Modes: The free parameters
are the model amplitude am defined in Equation 26. The
bending modes appear like the following in the menu or
template file:

B1) 0. 1 # Shear term
B2) 0. 1 # "banana" term

Just like the Fourier modes one can fit for an unre-
stricted number of bending modes and any number may
be skipped. However, only the first 3 are the most use-
ful, and the first mode (B1 = shear), can be somewhat
degenerate with the axis ratio of a model or the second
Fourier mode, when the amplitude is low. So care should
be taken when fitting the B1 mode.

8.3.4. Coordinate Rotation

As shown in Section 5, coordinate rotation allows for
the creation of spiral structures. There are two types of
coordinate rotation allowed, α-tanh and log-tanh. The
prefix α and log refer to the asymptotic behavior of the
angular rotation function beyond r > rout: θ(r) ∝ rα or
θ(r) ∝ log(r). The suffix tanh refers to the fact that at

25

small radii, the powerlaw/logarithmic functions are trun-
cated by a hyperbolic tangent. This is useful because the
tapering of the tanh function toward r = 0 allows for
the creation of a natural bar. Note that unlike ellipsoid
models, a spiral model is actually a 3-dimensional struc-
ture that can be inclined and tilted. However, it is an
infinitely thin model when viewed at 90o inclination.

Item R0 – Coordinate rotation function type:
The options are “power” for α-tanh rotation or “log” for
”log-tanh rotation.
Item R1 – Inner (bar) radius: The radius at which

θ(r) flattens off to 0, thus creating the appearance of
a bar (see Figure 7). As Section 5 explains, the “bar
radius” is an useful mathematical construct, and may or
may not have any bearing on the physical bar.
Item R2 – Outer radius: The radius beyond which

the function θ(r) behaves either like a pure power law or
a pure logarithm (see Figure 7).
Item R3 – Total angular rotation out to outer

radius: The total angular rotation (θout) at the
outer transition radius, θ = θout(r/rout)

α or θ(r) =
θoutlog(r/rout).
Item R4 – Asymptotic powerlaw rate (α-tanh)

or scale parameter (log-tanh): For α-tanh, this pa-
rameter is the α parameter in θ ∝ rα. For the log-
tanh function, it is the winding scale parameter (rws)
in θ ∝ log (r/rws).
Item R9 – Inclination angle to line of sight: A

face-on spiral can be inclined relative to the line of sight
to appear more elliptical. Zero degrees is face on, whereas
90 degrees is edge-on. Note that a 90 degree solution is
not allowed, because it corresponds to an infinitesimally
thin model.
Item R10 – Position angle in the plane of the

sky: An inclined spiral can be rotated in the plane of
the sky to match the position angle of the galaxy. A zero
degree PA is usually parallel to the x-axis, in contrast to
the standard definition of the PA of an ellipsoid model.

8.3.5. Profile Truncation

As discussed in Section 6 the profile truncation func-
tion can modify both the radial profile and the azimuthal
shape of an object when the truncation is allowed to have
its own set of shape parameters.
The profile truncation is also a little unusual in the

sense that it is a pseudo-component: in the Galfit

menu, it is designated as an object component just like
a Sérsic or a Gaussian, in contrast to Fourier or bend-
ing modes which only modify the component they im-
mediately follow. This is done so that multiple compo-
nents can be truncated by the same functions of identical
parameters without resorting to complicated constraint
files. For instance, this allows a bar, a spiral arm, and a
ring, when represented as three individual components,
to be joined seamlessly when truncated at the transition
region by just one function. For this to work, the com-
ponent being truncated has to be associated with a trun-
cation component, and this is done by attaching one or
both of the following to the end of a regular light profile
component:

Item Ti – Inner truncation by component num-
ber N : The light profile is truncated in the inner region

by component number N . This has the effect of making a
ring out of a regular light profile, whose outer region (be-
yond rout) is unaffected by truncation. When an object
is truncated in the inner region, the flux normalization
parameter changes to surface brightness normalized at
r = rout, as opposed to the total luminosity or central
surface brightness. This is done because the flux is near
peak near that location, thus is more intuitive.
Item To – Outer truncation by component num-

ber N : Just like the previous, this parameter is added
on to the end of a light profile model to indicate it is
truncated in the wings by component number N . When
a profile is truncated only in the outskirts, the flux nor-
malization parameter is the central surface brightness. If
used in conjunction with inner truncation, the luminosity
parameter is the surface brightness at rout.

The truncation function itself can have the following
free parameters, some of which are optional. If not ex-
plicitly listed in the template file or Galfit menu, the
optional parameters take on the value of the light profile
component to which the truncation function is associ-
ated. See Appendix B for details on the how the trun-
cation function depends on the following parameters.

Item T0 – Truncation type: The options are “ra-
dial” (for all light profiles except edgedisk. For edgedisk
only, the only options are “length”, and/or “width”. The
truncation type also has options Type 1 vs. Type 2 as
well as Type a vs. Type b (for spiral rotations only), as
explained below. Type 1 and Type a are default, and
have no special designations, whereas Type 2 and Type
b are represented, for example, by ”radial2” and ”radial-
b”.
Item T1 – (x, y) position (optional): The centroid

of the truncation function can be different from the light
profile model. When not specified (i.e. when T1 does
not exist in the menu), the centroid position is the same
as the individual light profile models (see Figure 15c).
Item T2 – Break radius: For an inner truncation,

this corresponds to the radius where the flux is 99% of
the amplitude of the original model (i.e. at rout). For
an outer truncation, this corresponds to the inner radius
where the flux is 99% of the amplitude of the original
model.
Item T3 – Softening length (Type 1) / soften-

ing radius (Type 2): This parameter is the length be-
yond rbreak, over which the flux drops to 1% of the flux
normally at that radius. Type 1 models have softening
length as the free parameter, so that the smaller the soft-
ening length value, the sharper the truncation. Whereas,
Type 2 models have softening radius so that the closer
in value T2 is to T3, the sharper the truncation.
Item T9 – Axis ratio (optional): The truncation

function can have its own elliptical axis ratio parameter
independent of the light profile (see Figure 15). When
T9 does not exist in the menu, it takes on the value of
the light profile model.
Item T10 – Position angle (optional): The trun-

cation function can have its own position angle parameter
independent of the light profile (see Figure 15). When
T10 does not exist in the menu, it takes on the value of
the light profile model.
Type a vs. Type b truncations. For spiral galax-

ies, the truncation parameter normally follows the tip

26

and tilt of the coordinate system, because it is generally
more intuitive to envision truncation in a face-on con-
figuration. However, if for some reason it is easier to
conceive truncation in the plane of the sky instead of in
the plane of the disk, then the Type-b truncations are
allowed. All the parameters thereby refer to the values
as measured in the plane of the sky rather than in the
plane of the disk. For non-spiral galaxies, there is no
difference between Type-a and Type-b.

As shown in Figure 15, the truncation function,
as a pseudo-component, can be modified by disky-
ness/boxyness, Fourier and bending modes. These terms
can be added onto the end of any truncation function
component, and identically affect all profiles that are
linked to it.

9. THE GREEN POP-UP Galfit WINDOW

If Item O is set to “both”, a green Galfit window will
pop up to indicate that the fit is ongoing. At any time,
you can quit, output a menu file, pause the fit, or change
the number of iterations by hitting the keys “q”, “o”,“p”,
or “n”, respectively, in the green pop-up window. At the
first convenient moment (i.e. after the current iteration),
Galfit will do what you asked. The pop-up window has
memory, so if you hit a key multiple times, e.g. out of
frustration, it will be reissued at the earliest convenience.
To get rid of the memory, kill the green window.
The output menu file (option “o”is simply a pre-

formatted file that you can feed back into Galfit . It
stores parameters in the current fit iteration.
If you hit “p” or “n”, you will receive a prompt in your

iteration window (not the green one). You must answer
the question in the iteration window before it would go
on. Usually, Galfit will decide when to quit fitting on
its own. But, if Galfit iterates over 100 times (an arti-
ficial limit), it will also quit. You can set the maximum
number of iterations you want this to happen by hitting
“n” and specifying the number of iterations. Normally,
Galfit should converge between 10 to 30 iterations.

10. OUTPUT FILES

Once Galfit finishes fitting, it will store the final
parameter information into 2 text files. The first file,
“fit.log” summarizes all the final parameters and error
bars for the fit. This file just keeps getting appended
and does not get removed. The errors quoted in “fit.log”
are based on diagonalizing and projecting the covariance
matrix. Thus the errors are purely statistical – some
would say meaningless because the errors are often dom-
inated by systematics due to the real galaxies not being
idealized profiles. The columns of numbers in the out-
put file are in the same order as the parameter numbers.
Parameters whose values are held fixed are enclosed in
square brackets, e.g. [6.27], whereas constrained param-
eters are in curly braces, e.g. {1.24}. If there is any pa-
rameter enclosed in between stars (as of Version 3.0.1),
e.g. *0.15*, it may have caused numerical convergence
issues such that even if Galfit produced an output, the
entire solution may have been unreliable. One must re-
fit the galaxy and restart/fix that or other parameters
to something sensible. A solution should never have a
parameter enclosed within stars!

When Galfit finishes fitting, it will also output a file
called “galfit.NN” that contains all the best fit parame-
ters. NN is a value that keeps increasing so it will never
overwrite the previous fit. Note that if there are missing
numbers in the “galfit.NN” sequence, the gap will even-
tually be filled. One can modify this file and feed it back
into Galfit to refine the fit.
Lastly, Galfit will output a data image block, which

is described in Item B of § 8.1. The final fit parameters
and a few important input parameters are also placed
into the FITS header of image[2] for convenience. Like
in ‘fit.log’, parameters whose values are held fixed are
enclosed in square brackets, and constrained parameters
are in curly braces.
If a user is running Galfit in a batch fitting mode us-

ing an external wrapper script, Galfit will return error
number 1 if it crashes, otherwise it’ll output a 0. This
code number can be intercepted by the calling script, for
example:

$errno = system ("\galfit\ $parfile");

The calling script can then decide how to proceed, i.e.
whether to move on to the next object, to fit this object
manually, or to redo the fit by modifying the input file.
Also, in the header of image.fits[2], Galfit will output

a parameter called ”FLAGS” which lists all the flags that
have been tripped during the iterations. To see what the
flags mean, type on the command line:

galfit -help

Most of the flags will not affect the fit; they are just
gathered into one place so the user may be aware of which
ones were tripped. The most important flags to watch
out for are numbered ”1” and ”2,” as well as the A ones.

11. HINTS ON DIFFICULT FITTING

The above information is all that one needs to know to
run Galfit. This section discusses some rules of thumb
when dealing with complicated analysis.
For simple one or two component models Galfit can

usually perform its duty without any interaction. But
once in a while one may come across a galaxy that re-
quires some amount of interaction to achieve a reasonable
fit. Unfortunately, this situation is often blamed on pa-
rameter degeneracies, when in fact it may be due to some
other reasons. To be sure, there are times when degen-
eracy and local minima are to blame. However, many
of the problems people encounter are caused by either
bad priors or bad initial guesses that cause parameters
to take on extreme values. With bad priors, no amount
of manipulation or parameter restarts is going to instill
more meaning to the analysis.
There is also another widely-held belief that numeri-

cal degeneracy is mostly caused by the number of pa-
rameters – a notion which is overly simplistic. To see
why, consider a situation where there are a million stars
that are non-overlapping. The three million parameters
needed to fit those stars using a Gaussian profile, or the
7 million needed for using a Sérsic model, are completely
non-degenerate. Contrast this to a single Nuker model of
9 parameters when rb is sufficiently small, which would
be degenerate in the powerlaw parameters, α, β, and γ.

27

b

DATA TRADITIONAL MODEL RESIDUAL

RESIDUALNEW MODELDATA

a

Fig. 16.— Examples of bad priors or numerical degeneracy on image analysis. a) a 3 component traditional ellipsoid fit to NGC 289 and
a single component fit to a neighboring object. Note that none of the components corresponds to a “bulge” due to the strong spiral arm
residuals. b) a bulge, disk, bar, and spiral arm fit of the same galaxy. The fitted bulge comes out naturally to have an axis ratio of 0.8,
and is an exponential bulge.

It is important for users to learn to tell the difference be-
tween situations caused by bad priors from those caused
by true numerical degeneracies when attempting to per-
form complex analysis, because the solutions to those
problems are quite different.

11.1. What are Bad Solutions Caused by Bad Priors?

A prior is bad when an user wants Galfit to per-
form analysis by using models that are ill-suited to the
task. The most common example is when one tries to do
a two-component decomposition, allegedly to extract a
bulge and a disk, on a galaxy which clearly has three or
more components, e.g. bulge, disk, bar, spiral, ring, etc..
The solution here is one which finds the best compromise
between the substructures, so that neither model compo-
nent may represent any physical feature in particular.
Here, the notion that one is performing bulge-to-disk
decomposition with two components is a flawed prior.
Another common situation is when a two component fit
might settle on features which are closest to the initial
parameter guesses, because features like a ring, bar, or
spiral, are spatially localized. This situation is often re-
ferred to as a local minimum solution, and it mostly hap-
pens when some of subcomponents are strongly localized
features. However, it is important to keep in mind that
even if a code can break out of such a local minimum, the
meaning would still be vague because the model repre-
sents a compromise of sorts. Figure 16, top, shows such a
situation where the prior is a 3 component fit intended to
extract a bulge, disk bar. However, even with 3 compo-
nents it is clear that at least the bulge component bears

no visual resemblance to a bulge, and is instead strongly
affected by the spiral residuals. Contrasting that to Fig-
ure 16, bottom, where spiral structures are fitted away,
the bulge comes out more sensibly to q = 0.8 and n = 1.
Another situation where the prior is inappropriate is

when one tries to fit more components than is present in
a galaxy, e.g. a 2 component fit onto a one component
galaxy. Because few galaxies are modeled perfectly by
a single analytic function, the solution one obtains may
only reflect the degree of mismatch between the model
profile and the data.
In summary, when a prior is bad, restarting the fit

from different initial conditions can yield an equally bad
and different solution; no amount of clever fine-tuning or
starting initial conditions can rescue the situation from
ambiguity. In that sense, it is important to understand
that bad solutions due to flawed priors are not true nu-
merical degeneracies. The solution is to apply better pri-
ors, and sometimes this means using more components
rather than fewer. Indeed, often a more stable solution
can be achieved by using more components if they can
remove all the prominent features, as for the case of Fig-
ure 16. In contrast, for true numerically degenerate solu-
tions, no amount of adding new components will produce
a more meaningful solution.

11.2. What are Bad Solutions Caused by Numerical
Degeneracy or Local Minima in the χ2?

There are situations in galaxy fitting where there are
true problems with numerical degeneracy and local min-
ima. This happens when multiple parameters can pro-

28

duce similar features. For instance, in the Nuker profile
(Equation 16), when rb is sufficiently small, when there
is a profile mismatch, or when the data are noisy, the
parameters α, β, γ are truly numerically degenerate, be-
cause there is an infinite number of ways to achieve the
same value for the fraction: γ−β

α . More specifically, as
shown in Figure 13, a low α can be reproduced by both
a high γ and a low β.
Another example of numerical degeneracy is between

the axis ratio (q), the second Fourier mode (m = 2), and
the first bending mode (m = 1, i.e. shear), all of which
can simulate ellipticity. Likewise, a combination of the
m = 2 and m = 4 Fourier modes can reproduce the same
features as the diskyness/boxyness parameter (C0).
A third example is in trying to fit a spiral structure.

When spiral arms are diffuse and have low inter-arm con-
trast, it may be difficult for Galfit to lock onto a so-
lution. In this situation, a model with a large amount
of winding of thin spiral arms might reduce the residual
just as well as a thick arm with fewer windings.
Some other examples of numerical degeneracy include

high Sérsic index values with the sky level, or, the
size/central concentration of a truncated model that has
a long softening radius. Note that in every one of the
above examples, degeneracies happen because, numeri-
cally, different parameters are similar in their ability to
model some behavior. Therefore, it is worthwhile to keep
in mind that some of these parameters should not be used
together haphazardly, even though one is allowed to do
so in Galfit.
The bottom line is that true numerical degeneracies

often cannot be solved by using better priors, and they
represent situations where different starting conditions
can affect the output parameter values or the physical
inference of the components. Indeed, practically the only
solution to true numerical degeneracies is to start the fit
with different initial conditions, or by choosing a more
appropriate function for the desired science task.
Even though real degeneracies may be present between

some parameters, it is useful to think carefully about
whether the science goals are negatively affected. Here
is a concrete example: if a goal is to extract the total
luminosity or size of a galaxy bar, then the issue of de-
generacy is moot even if one chooses to use both the C0

and the Fourier modes. For, even though C0 and Fourier
modes are mutually degenerate, they are not degener-
ate with the size and luminosity parameters. The use of
high order modes would benefit in this scenario by re-
covering more of the flux. As another example, as shown
Figure 16, sometimes the spiral arm parameters may be
degenerate for various reasons. Even so, the use of a spi-
ral component can help to stabilize the measurements of
bulge and disk components.

12. RULES OF THUMB FOR IMAGE FITTING AND
FREQUENTLY ASKED QUESTIONS

There are certain rules of thumb, i.e. good practices,
to understand when doing image fitting analysis. Some
of these originate from questions I received in the course
of user support over the years, others based on techni-
cal knowledge of the how the Levenberg-Marquardt algo-
rithm works, while others still are just based on personal
experience.

1. It is better to work with images where the pixels
are in counts units rather than counts per second.
Now a days, it is common for reduced images from
telescopes to have pixel units of counts per sec-
ond. However, for image analysis, it is better to
work with units in counts because it is easiest to
known when the sky parameter is fit incorrectly.
In galaxy fitting, the sky parameter is one of the
most important parameter to measure accurately.
A wrong estimate by even a count or two can lead
to significantly wrong total luminosity, concentra-
tion, and size of a galaxy. When the image is in
counts per second, a significant error in the fit of
the sky may be hard to detect when it is divided
by the exposure time.

2. Check to make sure the sigma image is correct. If
the convergence seems a bit weird (large changes
in parameters that do not seem to converge toward
any particular answer) make sure that the sigma
image is reasonable. If you are providing your own
sigma image into Galfit, please take a look at it
first to see if the objects show up in that image.
If they do not, it is not a sigma image. Please see
the Galfit page regarding why the sigma image
is important to get right.

3. Start simple, build up complexity. When fitting
multiple components, start with single or two com-
ponents first, then add more components based on
need arising from visual inspection of the residuals.

4. Always start with ellipsoidal models first. When
fitting Fourier modes, spiral arms, or other things
more complicated, always start out with simple el-
lipsoids. Then, take the best fit solution and add
complexity to those. One should never introduce
Fourier modes until the very last step. For in-
stance, when fitting a spiral galaxy using coordi-
nate rotation, with the exception of the m = 1
mode, I always find the best solution without
Fourier modes first. Once the spiral component
“locks on,” I then introduce Fourier modes to cre-
ate more realistic looking arms.

5. Keep a sharp eye out for small axis ratio (q . 0.1)
or size (r . 0.5 pix) parameters in the model!
When either the size parameter or the axis ratio
of a model grows too small at any time while Gal-

fit is iterating, it will not be able to converge ef-
fectively. All the parameters would appear to be
frozen, even when the code continues to iterate.
The reason this happens is that small sizes and
axis ratios often mean that the flux of the model
can fit within a single pixel in one or all directions,
therefore there is insufficient gradient information
for Galfit to converge. Note that Galfit often
will not crash when this happens. The code will
just seem to converge extremely slowly. To solve
this problem, hold the problematic size or axis ra-
tio parameter fixed to a larger value until the other
parameters have converged, then release it to see
whether it continues to misbehave. In a similar
vein....

29

6. Know when to hold ’em (i.e. the parameters fixed).
If a fit is converging on something non-sensical, one
can temporarily hold some of the parameters fixed
to more sensible values in the main input template
file (as opposed to the constraint file). They do
not have to be precise. One can set them free
later when the other parameters have converged.
This technique is useful when parameters like the
Sérsic index and size to haywire because of nearby
sources, PSF or profile mismatches, sky determi-
nation issues, or for other reasons. Note that if
one has to do this, often it is because the initial
guesses are very far from reality for at least one of
the components, or there is something else in the
image that should be either be fitted simultane-
ously or masked out. For instance, large residuals
around bright unresolved sources can often cause
an underlying Sérsic model to take on extreme val-
ues of n or re.

7. Parameter constraint files are NOT good to use.
Often times, people use parameter constraints to
make sure that the parameters fall within a sensible
range. However, keep in mind that: 1. The reason
that parameters may get nonsensical is that other
things in the image are affecting the fit. Thus the
solution should be to remove the offending objects.
2. Parameters that hit the boundary walls are bad
parameters, and should not be trusted/used. 3.
When a parameter hits a boundary, often times
it hampers the convergence of other parameters as
well, possibly making those equally unreliable. The
only constraints that are good to use are the ones
in the Galfit main menu/template file or the “off-
set” constraints in the constraint file. For instance,
it is fine to use the “offset” constraint to hold the
centroids between two components (e.g. bulge &
disk) fixed relative to each other. But, in gen-
eral, boundary constraints are rather finicky to use.
In my personal experience, I have never needed to
use constraint files except to keep relative centroids
fixed. So, users please be aware and inspect the re-
sults carefully.

8. Use object masking. One should always consider
masking out objects that are not being fitted, espe-
cially if an area is too dusty or irregular in shape.
For example, the jet in M87 will give Galfit prob-
lems because, even though they are local features,
the knots are much brighter than the diffuse un-
derlying star light. Masking is especially impor-
tant when fitting high order modes such as Fourier
modes, because by definition higher order modes
are sensitive to small perturbations. To create a
mask, I have a program which can help. If one
needs to mask a lot, please visit the ”Frequently
Asked Question” section on the Galfit website or
use SExtractor. On my website, I provide programs
to expedite the process of creating masks.

A better way to mask out a lot of objects (e.g.
stars) is to use the SExtractor software, and choose
the option to output a “segmentation image.” The
segmentation image is a mask of all the objects that
are detected by SExtractor where, instead of fluxes,

the pixel values correspond to unique ID numbers
of objects. To convert the segmentation image into
an object mask for Galfit, all one has to do is to
locate the object of interest to fit, and unmask it
by replacing the object ID with zero values (using
e.g. IRAF/imreplace).

9. See a bright convolution/PSF region in the model?
That usually means one or more of the following:
1. the convolution box (Item I) is too small (en-
large it), 2. the convolution PSF image size (Item
D) is too small (extract a larger PSF image size),
or 3. the PSF has a sky pedestal that is not re-
moved properly. Be sure not to confuse 2 with 3 –
a PSF image that cuts off the wings may look like
it has a sky pedestal, but confusing the difference
will lead to bad consequences. To confirm visually
that the sky is subtracted off completely, make sure
first that the PSF image is large enough to include
the wing, then multiply it by a large value; do not
take for granted that “close to zero” means there
is no sky (especially when the image ADU is in
counts/second).

10. Take a look at the individual subcomponents. It
is useful to scrutinize individual model subcompo-
nents to make sure that they “make sense,” instead
of just looking at the parameter values. If the re-
sults do not make intuitive sense, often times look-
ing at the images of subcomponents, individually,
will reveal quite easily what Galfit “sees” in the
image. Use the following command to produce sub-
components: galfit -o3 <filename>. Alternatively,
one can set parameter P to 3. See Item P in § 8.1.

11. Why do the centroids reported by Galfit not
match up to object centers in an image? If
the centroid reported by Galfit seems to be off-
set from the galaxy peak position, then the PSF
image is not centroided correctly. The absolute po-
sition parameter depends on how well the convolu-
tion PSF is centered in the PSF image. Nominally,
the PSF should be centered on pixel N/2 + 1 for
even N number of pixels along a side, and N/2+0.5
for odd number of pixels.

12. Bin down the data to save iterating time. If
a galaxy covering hundreds of pixels on a side is
hard to fit, try reducing the fitting region or bin-
ning down the data image to something more man-
ageable. Once a good fit has been obtained redo
the fit on the original image/fitting region. This
a handy trick for fitting many large galaxy images
because it speeds up the analysis and allows one to
explore a larger parameter space or combination of
components.

13. Be aware of PSF sampling and mismatch. High
contrast image analysis (e.g. quasar host decom-
position) is one of the most difficult analysis to do.
Often times PSF mismatch makes it difficult to re-
liably separate the central point source from the
host galaxy. For decomposition to work well, the
PSF must be over-sampled, and there has to be a
good match between the PSF model and the data

30

PSF. There is no reliable solution if the mismatch is
great. For situations where the PSF is undersam-
pled, One should either generate an oversampled
PSF somehow, or one should broaden the image
out to Nyquist sampling before doing the analysis.

14. How to tell if a source is unresolved. If one wants
to test whether a compact source is a true point
source, one can convolve a narrow Gaussian with a
PSF. However, make sure FWHM ≥ 0.5 pixels or
else Galfit may stop converging altogether. Usu-
ally it’s a good idea to hold the Gaussian FWHM
fixed to = 0.5 pixel. Once a solution is found, fit it
again by allowing the FWHM to vary.

15. Make sure the exposure times are what you think.
Make sure the image header has the correct ex-
posure time parameter (EXPTIME) and value, so
the initial guess for the flux is not several hundred

times off.

16. Watch out for Nuker parameters. For the Nuker
profile, make sure the parameters α, β, γ, do not
have the same values – this can easily cause singular
values, and force the program to quit. Initially,
one’s best bet for α and β parameters is somewhere
between 0 and 3, and 0 to 1 for γ. To get a better
feel for the behaviors of the parameters, take a look
at Lauer et al. (1995).

I hope these tips will help when fitting very difficult
cases. If the suggestions above do not work after all of
this, one is more than welcome to email me (cyp@nrc-
cnrc.gc.ca), and I’d be happy to give it a go to see what
the problem might be.

REFERENCES

Elson, R. A. 1999, “Stellar Dynamics in Globular Clusters”, in
10th Canary Islands Winter School of Astrophysics: Globular
clusters, p. 209 - 248. Eds C. Martinez Roger, P. Fourńon, F.
Sanchez. Cambridge Contemp., Cambridge University Press.

Krist, J. E., & Hook, R. N. 1997, in HST Calibration Workshop
with a New Generation of Instruments, eds. S. Casertano, et al.
(Baltimore: STScI), p. 192

Lauer, T. R., Ajhar, E. A., Byun, Y.-I., Dressler, A., Faber, S.
M., Grillmair, C., Kormendy, J., Richstone, D., & Tremaine, S.
1995, AJ, 110, 2622

Pence, W. 1999, ASP Conf. Ser., Vol. 172, 487

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124,

266.

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139,

2097.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery,

B. P. 1997, Numerical Recipes in C (Cambridge: Cambridge

Univ. Press)

31

IMAGE PARAMETERS
A) gal.fits # Input data image (FITS file)
B) imgblock.fits # Output data image block
C) none # Sigma image name (made from data if blank or "none")
D) psf.fits # # Input PSF image and (optional) diffusion kernel
E) 1 # PSF fine sampling factor relative to data
F) none # Bad pixel mask (FITS image or ASCII coord list)
G) none # File with parameter constraints (ASCII file)
H) 1 93 1 93 # Image region to fit (xmin xmax ymin ymax)
I) 100 100 # Size of the convolution box (x y)
J) 26.563 # Magnitude photometric zeropoint
K) 0.038 0.038 # Plate scale (dx dy) [arcsec per pixel]
O) both # Display type (regular, curses, both)
P) 0 # Options: 0=normal run; 1,2=make model/imgblock & quit

INITIAL FITTING PARAMETERS
#
For object type, the allowed functions are:
nuker, sersic, expdisk, devauc, king, psf, gaussian, moffat,
ferrer, and sky.
#
Hidden parameters will only appear when they’re specified:
C0 (diskyness/boxyness),
Fn (n=integer, Azimuthal Fourier Modes).
R0-R10 (PA rotation, for creating spiral structures).
#
--
par) par value(s) fit toggle(s) # parameter description
--

Object number: 1 -- A TRUE point source
0) psf # Object type
1) 50.00 50.00 1 1 # position x, y
3) 18.000 1 # total magnitude
Z) 0 # Output option (0 = residual, 1 = Don’t subtract)

Object number: 2
0) sersic # object type
1) 48.5180 51.2800 1 1 # position x, y
3) 20.0890 1 # integrated magnitude
4) 5.1160 1 # R_e (half-light radius) [pix]
5) 4.2490 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.7570 1 # axis ratio (b/a)
10) -60.3690 1 # position angle (PA) [deg: Up=0, Left=90]
F1) 0.0001 0.0000 1 1 # azim. Fourier mode 1, amplitude, & phase angle
F3) 0.0001 0.0000 1 1 # azim. Fourier mode 3, amplitude, & phase angle
Z) 0 # output option (0 = resid., 1 = Don’t subtract)

Object number: 3
0) expdisk # object type
1) 48.5180 51.2800 1 1 # position x, y
3) 20.0890 1 # integrated magnitude
4) 5.1160 1 # R_s (disk scale-length) [pix]
9) 0.7570 1 # axis ratio (b/a)
10) -60.3690 1 # position angle (PA) [deg: Up=0, Left=90]
C0) -0.05 0 # diskyness(-)/boxyness(+)
Z) 0 # output option (0 = resid., 1 = Don’t subtract)

Object number: 4
0) nuker # object type
1) 48.5180 51.2800 1 1 # position x, y
3) 20.0890 1 # mu(Rb) [mag/arcsec^2]
4) 5.1160 1 # Rb [pix]
5) 4.2490 1 # alpha
6) 1.1000 1 # beta
7) 0.3000 1 # gamma
9) 0.7570 1 # axis ratio (b/a)
10) -60.3690 1 # position angle (PA) [deg: Up=0, Left=90]
Z) 0 # output option (0 = resid., 1 = Don’t subtract)

Object number: 5
0) sky # object type
1) 1.3920 1 # sky background at center of fitting region [ADUs]
2) 0.0000 0 # dsky/dx (sky gradient in x)
3) 0.0000 0 # dsky/dy (sky gradient in y)
Z) 0 # output option (0 = resid., 1 = Don’t subtract)

Fig. 17.— Example of an input file. The object list is dynamic and can be extended as needed.

32

outθ

r

rin

out

APPENDIX

A — HYPERBOLIC TANGENT ROTATION FUNCTION

The hyperbolic tangent (tanh(rin, rout, θincl, θ
sky
PA ; r)) portion of the α-tanh (Eq. 27) and pow-tanh (Eq. 28) rotation

function is given by Equation 5 below. The constant CDEF is defined such that the rotation angle at the mathematical
“bar radius” rin, the rotation angle reaches 20 degrees. This definition is entirely empirical. The above Figure shows a
pure tanh rotation function, where the rotation angle reaches a maximum θout near r = rout. Beyond rout, the rotation
angle peaks out at θout. This function is multiplied with either a logarithmic or a powerlaw function to produce the
desired asymptotic rotation behavior seen in more realistic galaxies (see Section 5).

CDEF = 0.23 (constant for “bar′′ definition) (1)

A =
2× CDEF

|θout|+CDEF
− 1.00001 (2)

B =
(

2− tanh−1(A)
)

(

rout
rout − rin

)

(3)

r =
√

∆x2 +∆y2 (circular− centric distance) (4)

tanh(rin, rout, θincl, θ
sky
PA ; r) ≡ 0.5×

(

tanh

[

B

(

r

rout
− 1

)

+ 2

]

+ 1

)

(5)

B — HYPERBOLIC TANGENT TRUNCATION FUNCTION

The hyperbolic tangent truncation function (tanh(xc, yc; rbreak, rsoft, q, θPA)) (see Section 6) is very similar to the
coordinate rotation formulation in Appendix A, except for different constants that define the flux ratio at the truncation
radii: at r = rbreak the flux is 99% of the untruncated model profile, whereas at r = rsoft the flux is 1%. With this
definition, Equation 7 is the truncation function:

B = 2.65− 4.98

(

rbreak
rbreak − rsoft

)

(6)

P ≡ tanh(xc, yc; rbreak, rsoft, q, θPA) ≡ 0.5×
(

tanh

[

(2−B)
r

rbreak
+B

]

+ 1

)

(7)

Note that the radius r is a generalized radius (as opposed to a circular-centric distance), i.e. one which is perturbed
by C0, bending modes, or Fourier modes, of the truncation function. When softening length (∆rsoft) is used a free
parameter, it is defined as ∆rsoft = rbreak − rsoft.

